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ABSTRACT
This work presents a new approach of evolutionary multi-
objective optimization algorithms augmented by collective
intelligence interaction. In particular, we describe the exten-
sion of some well-known algorithms (NSGA-II, SMS-EMOA)
to include collective online preferences and collaborative so-
lutions into the optimization process. These innovative meth-
ods allow groups of decision makers to highlight the regions
of Pareto frontier that are more relevant to them as to fo-
cus the search process mainly on those areas. Addition-
ally, interactive and cooperative genetic algorithms work
on users’ collaborative preferences to improve the reference
points and the population quality throughout the evolution-
ary progress. Rather than a unique or small group of deci-
sion makers provided with unilateral preferences, this paper
promotes dynamic group preferences to aggregate consistent
collective reference points and creative solutions to enhance
multi-objective results. As part of this work we test the al-
gorithms efficiency when face with some synthetic problem
as well as a real-world case scenario.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
J.4 [Computer Applications]: Social and behavioral sci-
ences; G.1.6 [Mathematics of Computing]: Optimiza-
tion

General Terms
Algorithms

Keywords
collective intelligence; preferences; reference points; evolu-
tionary multi-objective optimization; collaboration

1. INTRODUCTION
Many real-life decision problems require managing trade-offs
between multiple objectives. These problems can be posed

as multi-objective optimization problems (MOPs) and they
must consider more than one criteria to be simultaneously
optimized [14]. In the general case, there is not a single
optimal solution which optimizes all the objectives at the
same time, but a set of points known as Pareto-optimal set
that represents different trade-offs between the objectives.
According to some a priori high-level preferences, a decision
maker (DM) has to select which of those solutions are the
ones to satisfy its needs.

MOPs tend to be NP-hard or NP-complete. Therefore, de-
terministic search techniques are usually unsuitable for this
task. Metaheuristic and stochastic approaches are a viable
alternative to handle this difficulty. Evolutionary algorithms
(EAs) can find a finite population of solutions in one itera-
tion run and disregard any particular shape of the underly-
ing fitness landscape. It has prompted the creation of what
has been called multi-objective optimization evolutionary al-
gorithms (MOEAs) [7].

The approximation of the entire Pareto-optimal set in some
application requires extensive time and computational re-
sources. Preference information from the DM can be used
for guiding the search to areas of interest and avoid regions
which are of no relevance. MOEAs can use decision makers’
contributions to improve the reference point and the popu-
lation quality throughout the evolutionary process. Rather
than a unique or small group of decision makers provided
with unilateral preferences, a helpful input parameters can
rely on the aggregation of vast and diverse masses of indi-
vidual DM intelligence. The interaction of groups explores
a diversity of answers and enhances multi-objective results.

The present work proposes and compares new preference-
based interactive MOEAs augmented by collective intelli-
gence (COIN) [22]. It introduces a new useful connection
between these fields and extends some of the current state-
of-the-art MOEAs. The hybrid algorithms aggregates con-
sistent and online preferences from collective environment
to the optimization process. Built upon the subjectivity of
the crowds and human cognition, the intelligence of partici-
patory actions addresses dynamic collaborative and creative
intermediate solutions to overcome MOPs difficulties.

The combination of COIN in MOEAs aims at improving the
quality of the obtained Pareto frontier approximation. Their
results are driven not by one DM, but a group of people
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that delimits their collective area of interest in the objec-
tive space. The new algorithms produce better solutions in
the sense that they iteratively refine the search parameters
and get users collaborations to generate more appropriated
points in the final trade-off set.

The rest of this paper is organized as follows. Section 2 cov-
ers some required formal definitions of multi-objective opti-
mization and collective intelligence field. The use and contri-
butions of collective intelligence field in MOEAs are explored
in Section 3. Section 4 presents the new algorithms based
on interactive and collective intelligence techniques. Some
results from benchmark problems and a resource placement
case study are analyzed in Section 5. Finally, in Section 6,
conclusive remarks and future work directions are put for-
ward.

2. BASIC CONCEPTS
MOP can be stated as follows:

minimize F (x) = {f1(x), . . . , fk(x)},
subject to gi(x) ≤ 0,

hj(x) = 0,

 (1)

where x = 〈x1, . . . , xn〉 ∈ Ω is an n-dimensional decision
variable. Thus, a MOP consists of k objectives, m + p
constraints, n decision variables and an evaluation function
F : Ω → Z that maps from the vector x to output vec-
tors a = 〈a1, . . . , ak〉. The solution to this problem can
be expressed by relying on the Pareto dominance relation-
ship. A x is said to dominate v (denoted as x ≺ v) iff
∀i ∈ {1, . . . , n}, xi ≤ vi ∧ ∃i ∈ {1, . . . , n} such that xi < vi.

A solution x ∈ Ω is Pareto optimal if there does not exist
another solution x′ ∈ Ω such that F (x′) ≺ F (x)}. The
Pareto-optimal set, PS , is defined as PS = {x ∈ Ω, @x′ ∈ Ω
such that F (x′) ≺ F (x)}. Similarly, the codomain of the
set is known as the Pareto-optimal front, PF [8].

Preferences are user-defined parameters and denote values
or subjective impressions regarding the trade-offs points. It
transforms qualitative feelings into quantitative values to
bias the search during the optimization phase and restrict
the objective space. In this sense, a reliable preference vec-
tor improves the trade-off answers obtained. Usually, a
preference information c is represented by a set of criteria
c ∈ C and the boundaries are constrained by the ideal (z∗),
utopian (z∗∗) and nadir (znad) points.

The reference point approach [23] concentrates the search of
non-dominated solutions near the selected point. It is based
on the achievement scalarizing function that uses a reference
point to capture the desired values of the objective functions.
Let z0 be a reference point for an n-objective optimization
problem of minimizing F (x) = {f1(x), ..., fk(x)}, the refer-
ence point scalarizing function can be stated as follows:

σ
(
z,z0,λ, ρ

)
= max
i=1,...,k

{
λi(zi − z0i )

}
+ ρ

k∑
i=1

λi
(
zi − z0i

)
,

(2)
where z ∈ Z is one objective vector, z0 =

〈
z01 , ..., z

0
k

〉
is

a reference point vector, σ is a mapping from Rk onto R,
λ = 〈λ1, ..., λk〉 is a scaling coefficients vector, and ρ is an

arbitrary small positive number. Therefore, the achievement
problem can be rebuilt as: min σ

(
z,z0,λ, ρ

)
.

2.1 Multi-Objective Evolutionary Optimization
MOEAs follow the common concepts of evolutionary algo-
rithms (EA). In every generation t, they find a set of indi-
viduals non-dominated by the rest of the population. The
parent and the offspring population sizes are µ and λ, respec-
tively [16]. A space of individuals i ∈ I represents the candi-
date solutions of a population P : P (t) = (i1(t), . . . , iµ(t)) ∈
Iµ. A problem-specific fitness function F : I → R measures
if certain solution satisfies the objective functions. Some op-
erators in charge of reproduction (crossover and mutation)
and selection create offspring generations until a termination
criterion is reached, such as: a candidate with acceptable
quality; a previous computational constraint; neither non-
dominated solutions comes out. After running a MOEA,
the final population detains an approximation set (S) of all
non-dominated solutions with finite size that is an appropri-
ate representation of PS .

Different performance indices are used to evaluate the qual-
ity of the Pareto front approximation. One of the techniques
available is the hypervolume or S-metric indicator [15]. It
is a quantitative metric that computes the region space cov-
ered by all non-dominated points. The hypervolume calcu-
lates the volume of the union of hypercubes ai defined by a
non-dominated point mi and a reference point xref defined
as:

S(M) = Λ({
⋃
i ai|mi ∈M})

= Λ(
⋃
m∈M{x|m ≺ x ≺ xref}) .

(3)

Pareto-optimal front coverage indicator, DS→PF , is a prox-
imity indicator [6] that defines the distance between an achieved
approximation set S and their closest counterpart in the cur-
rent Pareto-optimal front:

DS→PF (S) =
1

|S|
∑
x∈S

min
x′∈PS

{
d
(
x,x′)} , (4)

where d is the Euclidean distance between two points. If the
Pareto-optimal front is continuous, a correct formulation of
this indicator calls for a line integration over S. Small values
of DS→PF indicate proximity to the Pareto-optimal front.

The variance (σ2) is a statistical measure that expresses the
dispersion of data. Instead of a good spread of solutions
along PF , the method proposed in this work wants to obtain
subsets of solutions close to the collective reference point. In
this context, a small variance means the individuals from the
sample Y = {y1, . . . ,yN} are clustered closely around the
population mean (µ).

σ2 =
1

N

N∑
i=1

(yi − µ)2 (5)

In cases with more than one collective reference point (zj),
points are clustered based on the closest distance to one of
the reference points: Cj = {a ∈ Rk : ‖a − zj‖ ≤ ‖a −
zi‖,∀i}. Cluster Cj consists of all points for which zj is the
closest. The variance is calculated to each cluster separately.

2.2 Collective Intelligence
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Since the beginning of 2000, the development of social net-
work technologies and interactive online systems has pro-
moted a broader understanding of the“intelligence”concept.
A new phenomenon appeared based not only on the cogni-
tion of one individual, but also placed on a network of re-
lationships with other people and the external world. The
field known as collective intelligence (COIN) [20] is defined
as the self-organized group intelligence arisen from participa-
tory and collaboration actions of many individuals. Shared
tasks or issues are handled by singular contributions in such
a manner that their aggregation process creates better re-
sults and solves more problems than each particular con-
tribution separately [22, 18]. This phenomenon develops a
sui generis intelligence. It raises a global experience of col-
lective attitudes without centralized control, bigger than its
isolated pieces and sub-product of their combination.

COIN involves groups of individuals collaborating to cre-
ate synergy and augment the human intellectual processes.
A decision-making process over the Internet has to man-
age users’ interactions. It must get valuable knowledge con-
cealed or dispersed in the group, even when the participants
are not specialized in the subject. This environment in-
cludes large and heterogeneous audiences that are mostly in-
dependent among each others. Therefore, the problem must
be decomposed in tasks that sustain diversity and transient
members’ attendances to align the interest of crowds.

Handling collective intelligence means the combination of
those tools and methods in a dynamic space of production
to achieve an objective. As the purpose of this study is
the enhancement of MOEAs through the use of the collec-
tive preferences, interactive genetic algorithms (IGA) are
an appropriate technique to support this goal. IGA incor-
porates the evaluation of users on the candidates of evo-
lutionary algorithms to solve problems whose optimization
objectives are complex to be defined with exact functions
[21]. Users’ subjectivities are employed as fitness values to
drive the search throughout the evolution process.

3. COIN IN MOEAS
The optimal frontier (PF ) might be extremely large or pos-
sibly infinite. However, DMs still must identify and retrieve
the expected solutions to their demands from this trade-off
set. Reference points and interactive techniques can be ap-
plied on MOEAs to support the DMs reaching a preferred
sub-set of the front, instead of the entire front. Those meth-
ods use transitional results throughout the evolution process
and improve the search with reference points or fitness func-
tion adjustments. But very few MOEA algorithms consider
more than one user for reference point selection or evolu-
tionary interaction. They neglect a collective scenario where
many users could actively interact and take part of the de-
cision process throughout the optimization.

COIN is a different level of abstraction and can be a special
contribution to make MOEAs go beyond their reach. Hu-
man beings are used to multi-objective situations in their ev-
eryday lives. Complex scenarios that are hard for computer
might be easier or natural for human’s mind. People are able
to improve the multi-objective algorithms with cognitive and
subjective evaluation to find better solutions. Characteris-
tics such as perception, strategy, weighting factors, agility,

among others subjectivities might be introduced into the al-
gorithm to generate a better pool of answers and enhance
the optimization process.

This work proposes the integration of collective preferences
to the optimization process of MOEAs. The main idea un-
derlying this method is to drive the DM’s search towards
relevant regions in Pareto-optimal set and, also, promote
the usage of COIN as a local search for new individuals.
Following the Find-Fix-Verify method [3], some individu-
als from population are given to the users in order to get
their update and feedback. This approach encourages the
interaction of multiple participants and takes rational col-
laborations to improve the overall quality of EA population.

The algorithms indicated here (Section 4) have advantages
over others preference-based MOEAs. They choose the ref-
erence points interactively. Their references are not defined
a-priori, like the R-NSGA-II from Deb [12], nor indicated
by the DM as the middle point in the Light Beam approach
[10]. Rather, all the references are discovered online with the
support of a genuine collective intelligence of many users.

A collective reference point produced by the interaction and
aggregation of multiple opinions may provide a more accu-
rate reference point than designed by only one DM (unilat-
eral). A unique decision maker carries the risk of having
mistaken guidelines or poor quality in terms of search pa-
rameter. Conversely, the synergy of actions and the hetero-
geneity inside collective environments develop creative reso-
lutions based on the crowds’ subjectivity and cognition.

There are plenty of examples where COIN techniques over-
come individuals’ results [20] and legitimize the attempt to
incorporate this method within MOEAs. The Amazon Me-
chanical Turk site outsources digital tasks that are difficult
for computers, but not for humans, such as: tagging images,
writing product descriptions, identifying performers on mu-
sic and so on. InnoCentive site hosts companies’ problems
and offers a cash prize to the one who presents the most
preferred solution. Both initiatives harness collective ideas,
elaborate global preferences to hit the target and outperform
a design expert. Affinova delivers a service to companies
who want to improve their innovation and marketing rates in
consumer packaged goods, retail, financial services and de-
sign. Its platform empowers teams to develop ideas, collect
consumer feedback and predict the best execution plan for
them. Danone, a global food company, used their services
to launch the Activia product line in USA and the result
beat the initial forecast by four times [1]. Another example
is the puzzle game about protein folding: Foldit; it uses the
human brain’s natural three-dimensional pattern matching
to solve the problem of protein structure prediction. The
highest scoring solutions are analysed by researchers and
validated if applicable in real problems or not. Users in
Foldit has already helped to decipher the crystal structure
of the Mason-Pfizer monkey virus retroviral protease [19].

The free and easy-to-use application VizWiz [5] recruits web
volunteers, including from Mechanical Turk marketplace, to
help blind and visually impaired people. They send photos
with recorded questions about text labels, colors or icons and
get answers back in real time from online sources. Duolingo
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is a platform for practice and learning of several languages.
Its gamified background motivates the users to earn expe-
rience points as they progress on dictations and lessons.
The site uses crowdsourcing to discuss or fix grammar top-
ics and translate real content from the web. MatLab, a
famous matrix-based language for fast numeric computa-
tion, launched a coding contest which entries are scored and
ranked online [17]. The MatLab challenges are manifold,
such as: finding the n-th Fibonacci number as quickly as
possible or planning routes for the rovers in Mars. All the
entries are visible and the contestants can modify an existing
one and submit it again as their own entry. This strategy
promotes a kind of co-opetition (collaboration plus compe-
tition) that makes the solutions evolve by the collaboration
of many people. Xprize, a non-profit organization, defines
itself as an innovation engine and a catalyst for the benefit
of humanity. This institution stimulates prize competitions
on subjects like: global development and sustainable solu-
tions; energy and climate change; life sciences and education.
There is a monetary rewards for the winners, but the real
intention is to encourage the global collectivity to invest the
intellectual capital required for difficult problems.

4. ALGORITHMS
This section presents the new algorithms. They are exten-
sions of the classical MOEAs: NSGA-II and SMS-EMOA.
The main changes on the original methods are the incorpo-
ration of COIN into the selection procedure; the transfor-
mation of the continuous evolutionary process into an inter-
active one; and the adoption of reference points to drive the
search towards relevant regions in Pareto-optimal front.

4.1 CI-NSGA-II
One of the new algorithms is a variation of NSGA-II [11].
The NSGA-II is a non-domination based genetic algorithm
for multi-objective optimization. It adopts two main con-
cepts: a density information for diversity and a fast non-
dominated sorting in the population. The crowding distance
uses the size of the largest cuboid enclosing two neighbor-
ing solutions to estimate the density of points in the front.
Solutions with higher values of this measure are preferred
rather than those in a more crowded region (smaller values)
because they are better contributors to a uniformly spread-
out Pareto front. The non-dominated sorting places each
individual into a specific front such that the first front τ1 is
a non-dominant set, the second front τ2 is dominated only
by the individuals in τ1 and so on. Each solution inside the
front τn receives a rank equal to its non-domination level n.

The selection operator uses the rank (irank) and crowding
distance (idist) in a binary tournament. The partial order
≺c between two individuals i and j, for example, prefers the
minor domination rank if they are from different fronts or
otherwise, the one with higher values of crowding distance.
Then, crossover and mutation are applied to generate an
offspring population.

i ≺c j := irank < jrank ∨ (irank = jrank ∧ idist > jdist) (6)

In algorithm 1, the new CI-NSGA-II converts the original
NSGA-II into an interactive process. The subroutine Col-
lectiveContributions() suspends the evolution progress and
submits some individuals from population to the users’ eval-
uation. The individuals received can be analyzed in two dif-

ferent ways by the user: a pairwise comparison allows the
selection of the best candidate between two or more indi-
viduals; a dynamic game scenario stimulates the participant
creativity to improve or produce new solutions. Both ap-
proaches discover online reference points, but only the last
one generates alternatives for a rational improvement in the
evolution process.

Algorithm 1 The Collective Intelligence NSGA-II.

1: generation← numgeneration
2: block ← subsetgeneration . iteration interval
3: while i < generation do
4: while block do
5: offspring ← Tournament(pop)
6: offspring ← Crossover(offspring)
7: offspring ←Mutation(offspring)
8: pop← COIN Selection(offspring)
9: i+ +

10: end while
11: contributions← CollectiveContributions(front)
12: pop← contributions
13: Θ← ExpectationMaximization(contributions)
14: pop← ReferencePoint Distance(pop,Θ)
15: end while

After each collective interaction, the subroutine Expecta-
tionMaximization() gets all the new individuals (or compar-
isons) and calculates the similarity of answers. The expecta-
tion maximization approach creates online reference points
(Θ) for search optimization. A Gaussian Mixture model [2]
is used to emulate the evaluation landscape of all partici-
pants’ preferences. Figure 1 shows an example of three on-
line reference points and the Gaussian distribution of their
points from the well-known ZDT1 test suite [24].

Figure 1: Online collective reference points.

The procedure ReferencePointDistance() calculates the min-
imum distance from each point in the population to the near-
est collective reference points in Θ. This way, the point near
the reference point is favoured and stored in the population.

The CI-NSGA-II develops a partial order similar to the
NSGA-II procedure, but replaces the original crowding dis-
tance operator by the distance to collective reference points
(iref ). The COIN Selection() is based on this new partial
order. Like NSGA-II, individuals with minor domination
rank are preferred. But if they belong to the same front, the
one with the closest reference point distance is used instead.

i ≺c j := irank < jrank ∨ (irank = jrank ∧ iref < jref ) (7)
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4.2 CI-SMS-EMOA
The SMS-EMOA [4] is a steady-state algorithm that applies
the non-dominated sorting as a ranking criterion and the
hypervolume measure (S) as a selection operator.

After the non-domination ranking, the next step is to update
the last front population, Pworst. the SMS-EMOA replaces
the member with the minimum contribution to Pworst hy-
pervolume by a new individual that increases the hypervol-
ume covered by the population.

In algorithm 2, the new CI-SMS-EMOA converts the original
SMS-EMOA into an interactive process. The subroutines
CollectiveContribution() and ExpectationMaximization() work
in the same way as the previous algorithm, CI-NSGA-II.

Algorithm 2 The Collective Intelligence SMS-EMOA.

1: generation← numgeneration
2: block ← subsetgeneration . iteration interval
3: while i < generation do
4: while block do
5: offspring ← Tournament(pop)
6: offspring ← Crossover(offspring)
7: offspring ←Mutation(offspring)
8: pop← COIN Selection(offspring)
9: i+ +

10: end while
11: contributions← CollectiveContributions(front)
12: pop← contributions
13: Θ← ExpectationMaximization(contributions)
14: pop← Hyper-RefPoint Distance(pop,Θ, S)
15: end while

In the COIN Selection() operation, individuals with minor
domination rank (irank) are preferred. If they belong to
the same front, the one with the maximum contribution to
the hypervolume of the set and the closest reference point
distance (iref ) is selected.

The procedure Hype-RefPoint Distance() gets the hypervol-
ume contribution (S) and calculates the minimum distance
from each solution in the population to the nearest collec-
tive reference points in Θ. This way, the solution with high
hypervolume values and short reference point distance is
favoured and stored in the new population.

5. EXPERIMENTAL RESULTS
This section presents some results of CI-NSGA-II and CI-
SMS-EMOA. The multi-objective test problems ZDT [24]
and DTLZ [13] have a known optimal front and can be used
to benchmark the outcome of the algorithms. A real-world
case is formally introduced afterwards and submitted to a
COIN experiment.

5.1 Multi-Objective Test Problems
ZDTs and DTLZs are a set of well established scalable multi-
objective test problems. Extensively used in MOEA studies,
these benchmark problems were selected to analyse the be-
haviour of the proposed COIN MOEAs algorithms in the
first moment. Each of these test functions knows a priori
the exact shape and location of Pareto-optimal front. Their

(a) DTLZ2 (b) DTLZ7

Figure 2: CI-NSGA-II results for DTLZ2 and DTLZ7 prob-
lems.

features cover different classes of MOPs: convex Pareto-
optimal front, non-convex, non-contiguous convex parts and
multimodal; and in the case of DTLZ are scalable to more
than two objectives (M > 2). For those reasons, the test
problems submit the new algorithms to distinct optimiza-
tion difficulties and provide a broader comprehension of its
working principles.

In the case of ZDTs and DTLZs test problems, the exper-
iment emulates the collectivity by developing some virtual
DMs (robots). The algorithms CI-NSGA-II and CI-SMS-
EMOA suspends the evolution progress and submits some
individuals from population to the robots’ pairwise evalu-
ation. Each robot has a predefined point in the objective
space which will be used to direct robots’ votes. The robot
votes on a solution according to the closest distance between
its predefined point and each of the two candidates. Another
advantage is that one robot can perform multiple pairwise
comparisons in one iteration.

The robots create the collective reference points with a bet-
ter reasoning than simply random choice. It is important
to notice that the collective reference point is built on the
similarity of answers after the Gaussian Mixture model and
cannot be confused with the robots’ predefined points.

Based on the best run of CI-NSGA-II in terms of Pareto-
optimal front coverage indicator (DS→PF ) and variance (σ2),
figure 2 shows the relevant regions found in Pareto front to
the DTLZ2 and DTLZ7 problems.

In addition to the Gaussian Mixture model, the K-means
algorithm was implemented to bring a different clustering
technique into the analysis. But the performance of Gaus-
sian Mixture in these cases was consistently better than K-
means. The front coverage (DS→PF ) and the variance (σ2)
indicators were used to measure the quality of the results.
The hypervolume was not employed because their values de-
pend on the spread of solutions in the whole Pareto front and
the proposed algorithms, on contrary, aim to obtain subsets
of solutions close to the collective reference points.

After 30 independent executions per EA on each test prob-
lem, figure 3 report the distribution of the front coverage and
dispersion indicators in the form of box plots, respectively.

Although box plots allow a visual comparison of the results,
it is necessary to go beyond reporting the descriptive statis-
tics of the performance indicators. The need for comparing
the performance of the algorithms when confronted with the
different clustering techniques prompts the use of statistical
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ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

0.0

0.1

0.2

0.3

0.4

0.5

CI-NSGA-II CI-SMS-EMOA

(c) σ2 in ZDT1-6 (d) σ2 in DTLZ1-7

Figure 3: Distribution of DS→PF and σ2 values for the tests.

Table 1: Results of the Conover-Inman statistical hypothesis
tests. Green cells (+) denote cases where the algorithm in
the row statistically was better than the one in the column.
Cells marked in red (−) are cases where the method in the
column yielded statistically better results when compared to
the method in the row.

ZDT1 ZDT2 ZDT3

CI-NSGA-II CI-SMS-EMOA CI-NSGA-II CI-SMS-EMOA CI-NSGA-II CI-SMS-EMOA

CI-NSGA-II � + CI-NSGA-II � + CI-NSGA-II � −
CI-SMS-EMOA − � CI-SMS-EMOA − � CI-SMS-EMOA + �

ZDT4 ZDT6 DTLZ1

CI-NSGA-II CI-SMS-EMOA CI-NSGA-II CI-SMS-EMOA CI-NSGA-II CI-SMS-EMOA

CI-NSGA-II � + CI-NSGA-II � + CI-NSGA-II � −
CI-SMS-EMOA − � CI-SMS-EMOA − � CI-SMS-EMOA + �

DTLZ2 DTLZ3 DTLZ4

CI-NSGA-II CI-SMS-EMOA CI-NSGA-II CI-SMS-EMOA CI-NSGA-II CI-SMS-EMOA

CI-NSGA-II � + CI-NSGA-II � + CI-NSGA-II � +
CI-SMS-EMOA − � CI-SMS-EMOA − � CI-SMS-EMOA − �

DTLZ5 DTLZ6 DTLZ7

CI-NSGA-II CI-SMS-EMOA CI-NSGA-II CI-SMS-EMOA CI-NSGA-II CI-SMS-EMOA

CI-NSGA-II � + CI-NSGA-II � + CI-NSGA-II � +
CI-SMS-EMOA − � CI-SMS-EMOA − � CI-SMS-EMOA − �

tools in order to reach a valid judgement regarding the qual-
ity of the solutions and how different algorithms compare
with each other.

The Conover-Inman procedure [9] is a non-parametric method
particularly suited for this purpose. It can be applied in a
pairwise manner to determine if the results of one algorithm
were significantly better than those of the other. A signif-
icance level, α, of 0.05 was used for all tests. Table 1 con-
tains the results of the statistical analysis, the CI-NSGA-II
with Gaussian Mixture model consistently outperformed the
CI-SMS-EMOA in these benchmarks. Concerning the con-
vergence and dispersion measures, it was ranked best in all
functions except for ZDT3 and DTLZ1. CI-NSGA-II and
its collective reference points proved to be well matched for
the range of ZDT and DTLZ test problems.

5.2 Resource Distribution problem
Many companies face problems of resource placement and
assignment. A mining industry is one of the domain con-
texts where these problems are present. Those companies
must extract valuable minerals or other geological materials
from resource areas and allocate warehouses in such a way
that optimizes its operational costs and production of col-
lected resources. This general idea transforms the resource
management into a multi-objective problem where one have

Figure 4: Chromosome encoding.

to operate in an economic way and, at the same time, pri-
oritize the performance or production.

The problem —to put it in simple terms— has to find a
good solution for positioning the processing units according
the resource area. It is formally represented as:

min

N∑
i=1

M∑
j=1

σijdij +

M∑
j=1

cjµ , (8)

max

N∑
i=1

M∑
j=1

σijvj . (9)

Let µ be the cost of one processing unit, v the productive
capacity of one processing unit linked to one resource area,
M a set of available positions to production units, N a set of
available positions to resource area and D a distance matrix
(def )nxm, where n ∈ N and m ∈M . The decision variables
are the processing unit cj (j ∈ M) that assumes 1 if it is
placed at position j or 0 otherwise and σij that assumes 1 if
there is a link between the resource area at position i ∈ N
and the processing unit at position j ∈M .

The processing unit is computationally represented as a tu-
ple ci =< x, y, t >; where ci ∈ C = {c1, ..., ck}, t is the
type of the unit, x and y are the Cartesian coordinates of
the position. The resource area is represented by the tuple
ai =< x, y, l >; where ai ∈ A = {a1, ..., aq}, l is a index that
links the resource area ai to the unit ci. Thus, the chromo-
some encoding (figure 4) is the aggregation of these tuples
regulated by q resource areas and k processing units.

Different constraints from real life and several new interde-
pendencies among the variables might increase the search
complexity of this MOP. Progressive articulation of prefer-
ences and collective intelligence can implement a dynamism
not managed by a priori methods and enhance its efficiency.
Therefore, the problem described is a candidate for this ex-
periment due to some reasons: a) the objectives and decision
variables are meaningful to the group, the problem is intu-
itive and allows an interaction with the crowd’s cognition; b)
incentive engines and gamification can be used to retain the
users’ interest on the interaction during the optimization; c)
the problem can be decomposed in small blocks to be pre-
sented to the participants; d) the users’ feed-backs can be
parallelized in synchrony with the evolution of individuals
in a MOEA.

In this context, the resource distribution problem was de-
signed as a game where every player compete among them-
selves to obtain points and recognition of success. The game
was implemented in a web-based platform and is open to all
public. A gamification feature was implemented to moti-
vate and promote the necessary alignment of goals to all the
users in the collectivity. Gamification is the integration of
game design elements and game engines in non-game con-
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Figure 5: Gamification features and pairwise comparisons.

texts. This is usually intended to increase engagement of
players, create gameful and playful user experiences, moti-
vate them and set clear objectives to guide a cooperative or
competitive behaviour.

The experiment was applied in two different computer labs:
a brazilian professional education center with more than 30
students’ attendance and a private company training room.
After a certain number of iterations, the CI-NSGA-II algo-
rithm interrupts the evolution process and asks the players
for preferred individuals. There are two options in the game:
pairwise comparison or free design mode.

In the pairwise comparison mode, the players must vote on
the best candidate between two or more resource distribu-
tion scenarios (individuals from population). As votes on
the scenarios happen, the Gaussian Mixture model calcu-
lates the collective reference point to restrict the search to
relevant areas in Pareto front. The players who have chosen
the individuals near the collective reference point receive a
higher score. They compete at every evolution interval for
choices around the collective mean. The game needs seven
collective interactions to reach optimum points in the front.
Figure 5 exhibits different phases of the game and the screen
for pairwise comparisons of individuals.

In the free design mode, a dynamic game scenario encour-
ages the creativity and cognition to produce new solutions.
Some individuals from population are distributed to the
players who have to fix and change their position arrange-
ment. This game mode uses the collaboration to apply ra-
tional improvements in the quality of EA population.

Following the problem definition and constraints, the dy-
namic game scenario (figure 7) allows the creation of ob-
jects like trucks or warehouses, changing their arrangements
and rebuilding their connections. For test purpose, there
are two test environments: open creation and only improve-
ment. The former opens the board for insert and deletion of
objects, whereas the latter allows only the position and link
rearrangement with the objects in the board.

The front coverage indicator, DS→PF , measures the distance
between the current approximation set S and the Pareto-
optimal front. The proximity to the Pareto-optimal front
DS→PF = 0.5 is the criteria to stop the evolution and com-
pare the algorithms. The values in table 2 and 3 represent
the mean of all completed games.

The algorithm iteratively refines the search parameters and

Table 2: Performance for NSGA-II and CI-NSGA-II.

Environment
Performance
Measure

NSGA-II CI-NSGA-II Generations

open creation DS→PF 0,7 0,5
120

σ2 189 112

only improvement
DS→PF 0,5 0,5

145
σ2 178 123

Table 3: Performance for SMS-EMOA and CI-SMS-EMOA.

Environment
Performance
Measure

SMS-EMOA CI-SMS-EMOA Generations

open creation DS→PF 0,6 0,5
143

σ2 197 160

only improvement
DS→PF 0,5 0,5

151
σ2 188 169

adopts players collaborations to achieve more appropriated
points in the final trade-off set. According to the tables 2
and 3, the CI-NSGA had a lower dispersion σ2, which means
the points are clustered closely around the collective refer-
ence point. It also required less generations to reach the
convergence DS→PF = 0.5 (figure 6). However, in the first
generations of the evolution the distance between CI-NSGA-
II front and the original NSGA-II front is greater than the
last ones. It means that, for problems with low complexity,
the original MOEAs reach the CI-NSGA-II progress. Al-
though the CI-NSGA hit the proximity limit in the first
place, the time spent on the human interaction was higher
than the original MOEAs run.

Thus, in order to validate the efficiency of this novel ap-
proach, further studies on more complex scenarios intent to
analyse the performance of CI-NSGA-II. In this context, the
perspective is that CI-NSGA-II performs better, keeping the
advantage of the original MOEAs and achieving the Pareto-
optimal front.

This gamification aims to enhance the results of MOPs through
COIN and support the DMs in the decision process. At
the end of each game, only one scenario is presented to the
players. Figure 7 shows the final solution from a single ex-
periment game. After the collective reference points and
users contributions in a game composed of six resource areas
and two processing units, this candidate was progressively
created with the support of users subjectivity and percep-
tion. From the group’s point of view, it is the best alterna-
tive (winner candidate) and overcomes many others optimal
points in the front.

6. FINAL REMARKS

Figure 6: Convergence of CI-NSGA-II individuals.
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Figure 7: Evolutionary algorithm solution for six areas.

In this work we have introduced a novel interactive ap-
proach in multi-objective optimization evolutionary algo-
rithms. The new algorithms CI-NSGA-II and CI-SMS-EMOA
improve the successive stages of evolution via group’s pref-
erences and collaboration in a direct crowdsourcing fashion.
The algorithms apprehend people’s heterogeneity and com-
mon sense to guide the search through relevant regions of
Pareto-optimal front and discover creative resolutions. The
wisdom arisen from the diversity of many individuals is able
to enhance MOEAs and overcome its difficulties.

A real-world case study regarding resource distribution was
tested successfully against the algorithms. The multi-objective
scenario was reproduced as a game and directed to a collec-
tive intelligence support. The ZDT and DTLZ benchmark-
ing problems were also used to evaluate the new approaches.
Their a-priori known Pareto-optimal front allowed the test
of convergence and dispersion of points in the frontier. Re-
sults outlined the benefits of collective collaborations to un-
fold solutions designed by a group of people that is more
intelligent when is working together.

In the near future, we plan to explore different features of the
evolutionary process. We are particularly interested in more
complex scenarios with many constraints and non-explicit
objectives hidden in the problem. It is important to validate
if the complexity of the environment will favour even more
the integration of COIN in MOEAs. Furthermore, we intent
to apply directional information from the collective reference
points during the evolution process. This way, the technique
can extract the intelligence of the crowds and, at the same
time, minimize the interruptions of the algorithm.
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