
Development of Open Source Software, a Qualitative view in a

Knowledge Management Approach

Luã Marcelo Muriana¹, Cristiano Maciel² and Ana Cristina Bicharra Garcia¹
1Institute of Computing, Federal Fluminense University UFF, Voluntários da Pátria Street, Niterói, Brazil

2Department of Computing, Federal University of Mato Grosso – UFMT, Cuiabá, Brazil

{lmuriana, bicharra}@ic.uff.br, cmaciel@ufmt.br

Keywords: Collective Intelligence, Open Source, Knowledge Management, Quality Assurance, Software Engineering,

Community.

Abstract: Open Source Software (OSS) is software that users have freedom to modify and share it with no cost whatever

their intentions. A major feature of this kind of software is its development in public, where the collective

intelligence (CI) is applied and the knowledge is shared. The communication is a fundamental activity to these

settings of development. To support the communication process, knowledge management (KM) stimulates

the communication and the information sharing among people. This way, a good communication among users

that are stimulated and coordinated addresses the final quality of the open source project. This work surveys

how KM stimulates quality assurance in developing open source settings. It focuses on users, on the

communication among them, and on the documentation they can help to write.

1 INTRODUCTION

In a traditional process of software development,
people stay in the same place developing activities
inherent to its process. But, in the last years
Distributed Software Development (DSD) emerged, in
which various organizations started to develop
software with a team of people from different
geographical areas.

In addition to this concept there is another one of
CI, that for Malone et al. (2009) means that different
groups work together on a way that seem intelligent.

CI has a new meaning in the last years, especially
with the advance on the web application 2.0. The
diffusion of these simple and easy technologies lets
users interact. Currently, the users’ contributions are
treated as a valuable factor for CI. Users are also
encouraged to contribute with content, interact with
other users and exchange knowledge (Hwang et al.,
2009). For DSD, the organizations follow standards
established by themselves and traditional software
engineering. In contradiction to that, CI in Information
Technology area emerges in a scenario that OSS is
highlighted.

OSS software is made available to the users to
change and distribute the software for any purpose, and
with no cost (GNU, 2013). Free software is the type of
software that the author can attain a license for
operation, copy, change and distribution. These

licenses are called copyleft. Copyleft is less restrictive
than copyright license, but various free licenses
impose restrictions on free code; for example the joint
use with closed code; or the imposition of obligations
as “changes on distributed code should be available as
source code”.

One of the characteristics of free software is the
public development, using CI.

However, when people think of Distributed
Development of OSS (DDOSS) some issues about the
software engineering emerge: How is the process of
software engineering executed? For Audy and
Priklandnicki (2008) the methods of software
engineering are structured approaches that give details
of ‘how’ develop good software. For the authors, the
methods involve a set of steps: planning and project
estimation, requirements analysis, data structure
design, architecture and program algorithm
processing, coding, testing, maintenance, and others.

But in environments of DDOSS, according to Noll
and Liu (2010) and Scacchi (2002), traditional
software engineering is not applied.

If classic software engineering is not applied in
open source development process, standards of quality
in software would be rarely followed in these. For
Shaikh and Ceron (2007), communication and
effective management, programming language and the
choice of test strategy are three factors which most
affect the quality of OSS.

Communication, the focus of this research, can be
regarded as a fundamental activity for development
environments. But, as it does not happen in the
physical presence, it should be encouraged and
facilitated, once it is one of the problems of CI and,
consequently, the understanding of information
(Hwang et al., 2009). These problems affect the quality
of the final product developed.

The management of knowledge, aiming to support
this communication process, encourages the
communication and information sharing. Good
communication with users who are encouraged and
coordinated, affects the final quality of the open source
project.

This study therefore aims to analyze through
literature research, how OSS can be developed
throughout the process practices to assist the quality
assurance of software and how to tailor it to the reality
of these communities. The focus of this analysis is the
study of what the authors consider the basis of open
source communities, users and communication among
them. Then, this analysis about the quality is based on
KM, a subject which encourages the diffusion of
knowledge.

The other part of this study is structured as follows:
in Section 2 some studies related to these issues are
presented; Section 3 considers open source
communities; Section 4 discusses software
engineering and the documentation on the
development environment; Section 5 deals with social
media tools and how it supports the communication
among people; and Section 6 discusses quality
assurance of software based on KM and members of
open source communities.

2 RELATED STUDIES

This study had the aim to analyze open source
communities and to know how to assure quality of
software considering KM on communication process
among users. For that purpose many studies have been
carried out.

Zhao and Elbaum (2000) conducted a survey that
aimed to: i) find out techniques of quality assurance
used in open source development, ii) determine factors
that affect quality assurance activities; iii) understand
the perception of open source developers regarding
quality assurance. The study was limited to the process
activities as the whole process, instead of each step,
being focused on software tests.

Tosi and Tahir (2013) analyzed 33 open source
projects well known to understand how developers
develop quality assurance on their open source
projects. However, as with Zhao and Elbaum (2000)
the focus was on Software Test.

Michlmayr et al. (2005) although, presented
factors that contribute to quality assurance, as
problems that interfere on its practice, the focus was
on the process as itself. The communication among the
users and the information sharing among them was not
considered as an important factor for quality
assurance.

Spinellis and Szyperski (2004) conducted a study
concerning how the reuse of coding can contribute to
quality assurance because this practice promotes more
developers to see the same code, detecting problems
and then correcting it.

Shaikh and Ceron (2007) investigated factors that
have influence on open source quality and the relation
among these factors. From this study, authors
mentioned three main factors about basic
characteristics of OSS quality: access quality,
development quality and design quality. Although
some criteria as availability and document updating
have been mentioned, the authors did not report the
importance of user participation and the
communication process among them for this activity.

Aberdour (2007) presented an overview
concerning the assurance quality process during whole
open source development. However, KM was not
mentioned.

Concerning the quality, no other study was found
that considered the basis of open source community,
users and communication, or KM as a fundamental
theory for these communities.

3 OPEN SOURCE COMMUNITIES

OSS is a type of software which users can change and
distribute with/without cost for any purpose (GNU,
2013). In a developer’s perspective, Spinellis and
Szyperski (2004) says that OSS is the combination of
two important properties: visibility of source code, and
the right to derive the product from the original. OSI
(2013) commented that open source does not mean that
the user owns the access to the source code of one
software. In accordance with GNU (2013), OSI (2013)
says that a program is free software when users may
execute it for any purpose and study how the program
works and adapt it to their needs. Also, users may
redistribute copies of the program

Totally disagreeing to closed codes, and joining the
criteria defined by OSI (2013), groups of people
started to discuss the development of OSS in
communities created exclusively for this purpose.
Open Source Development is a revolutionary
development model (Bayrak and Davis, 2003) because
it allows people that are geographically distributed to
work simultaneously, or if they wish, to work on the
same project with common interests.

It can therefore be concluded that open source
communities use the concept of CI as a tool to develop
a joint work (Malone et al., 2009). For Porruvecchio et
al. (2010), OSS can be seen as a result of sharing
knowledge among people from a community. In many
existing characteristics of communities that use CI as
knowledge source, Hintikka (2008) and Hwang et al.
(2009) highlight: the opinion diversity among people
who join the group, existing tools that support
knowledge sharing, participant independence and
decentralization, which is linked to DDS.

However, open source communities are not
focused on software documentation, and because of
this the documents tend to be incomplete. The biggest
focus of these communities is the universe around the
code development (Porruvecchio et al., 2010). Therefore,
the documentation needs to exist. It is not necessary to
describe the whole system, but it needs to be able to
clarify users doubts (Berglund and Priestley, 2001).

4 SOFTWARE ENGINEERING FOR

OSS

Sommerville (2007) says that the process of software
development consists of four basic steps: software
specification, software development, software
validation and the evolution of the software. Although,
Noll and Liu (2010), Scacchi (2002) and Noll (2008)
affirm that supporters of open source development do
not use all the basic steps. Some studies have then been
made to understand how the activities of software
engineering are made on open source development,
when the traditional process is not applied.

Studies carried out by Noll and Liu (2010) and Noll
(2008) aimed to understand how the requirements are
elicited, documented, accepted and validated in small
open source projects. Through the analysis of
elicitation in the web browser Firefox, it was found
that the majority of the characteristics are elicited by
developers based on their own experiences, or the
knowledge of the users’ needs. The authors
highlighted that requirements are informally discussed
and its validations happen through discussion between
the developers, and rarely include users. The authors
say also that the documentation consists of only
discussion files.

Scacchi (2002) focused on how requirement
engineering is applied on OSS development. The study
analyzed four open source communities and in its
results realized that many types of activities that are
used on this kind of development are equivalent to
traditional requirement engineering. However, to
support these activities, the authors mentioned web
applications such as email and boards are used as
support tools. The authors highlight the use of informal

language to describe the requirements. They allege that
participants of the development community
comprehend and easily condense the idea when the
information is written in a succinct and informal
manner. Lethbridge et al. (2003) confirmed this
observation saying that as the more abstract the
passages of the documents are, the more valuable and
useful they are considered by the users.

Therefore, there is no process of open source
development that is accepted worldwide (Acuna et al.,
2012). Each community open source uses its
peculiarity for the process, even though all of them
have the user as an important source of knowledge.

4.1 Software Documentation

To obtain high quality software, even if there are
documents to support the process, is not easy.
However, the documentation can improve the quality
of software code and the communication between the
members of a community (Dagenais and Robillard,
2010).

It is highlighted that, in this study, when
documentation is mentioned it can refer to traditional
documentation of software engineering and to
documents as manuals which describes how to use a
specific product.

To understand in which circumstances the
documentation of open source communities are
created and kept, Dagenais and Robillard (2010)
analyzed 19 documentations of ten open source
projects and interviewed writers and readers of those
documents. The first proviso is that creating and
keeping these documents represents a big effort,
because it is not known which factors are considered
when documents are used and how these documents
influence the project.

For Treude and Storey (2011), developers had a
negative view of the documentation once written, it
only occurred because of the necessary official
requirements, and then it was almost always
incomplete and not actualized. In addition, Parnin et al.
(2005) said that when a document is written it quickly
becomes old and is therefore distrusted by the users
who do not use it.

To aggravate the situation, Lethbridge et al. (2003)
regarded that sometimes the documents are not
updated. The changes are registered only when the
alterations present a big difference from the actual
documentation

As an attempt to reduce the problems of an
incomplete or delayed documentation, Berglund and
Priestley (2001) said that even the documentation is of
a specific activity, it can be opened to the community
involved on that software through email lists and
forums, where readers and writers can debate and
dialogue questions. As many users are involved in this

writing process, the discussions performed have more
probability to be a source for new requirements to be
elicited, letting the documentation evolve. Parnin et al.
(2005) reported that people are capable to produce a
great source of content and that this documentation is
seen by many users.

Therefore, the key factor for documentation and
for the whole process of OSS development is the
communication. In open source communities the
communication is fundamental to improve the group
work (Porruvecchio et al., 2010).

5 SOCIAL MEDIA AND

COMMUNICATION

In a study analyzed by Parnin et al. (2005), the authors
highlighted that because of an incomplete
documentation the users search for interactive media
on the web to try to solve problems that arise during
the development and/or use of some tool.

For Begel et al. (2010), social media has changed
the way that people collaborate and share information.
According to the authors, the traditional process of
software engineering involves a big time spent at work
for communication developers. In an attempt to
decrease this problem, some web applications (email,
file sharing, and communities) have the ability to
improve workers’ communication. With web 2.0, the
use of social relations expanded the production and
sharing information.

For the sharing information process, the
communication between the members has a
fundamental role, increasing and improving the work
group, promoting a collaborative environment. The
collaboration occurs in all levels of community
participants and has as an advantage the diversity of
skills, proposals and suggestions, and the development
of higher quality software (Porruvecchio et al., 2010).

However, open source development requires a
framework that allows the community to cooperate,
develop and capture the qualities of this type of
development (Berglund and Priestley, 2001). The
communication in these groups can occur supported by
various tools: chats, forums, wikis, email lists and
others. These tools support idea exchange, helping
request and information sharing, as an important
indicator for the success of open source projects
(Porruvecchio et al., 2010).

Through social media, a new way for knowledge
exchange emerged (Treude et al., 2011). A diversity of
studies analyzed various tools of web 2.0 which are
highlighted under software engineering view, as
follows:
 Blog: a website where structure is quickly

updated from additions that are called articles.

Many subjects can be discussed and readers can
provide feedback. Feedback helps to improve
software. Treude and Storey (2011) said that
blogs are easily created and kept, but are not
always enough.

 Social Networks: social structures composed
by people or organizations, linked themselves
by one or many kind of relations, who share
common values and objectives.

 Communities Q & A (Questions and
Answers): Consists in environments focused on
questions and answers. Websites Q & A became
knowledge databases distributed among many
people, differently skilled and specialized
(Treude et al., 2011). Q&A environments are
tools which help the discussion process for the
development of software as a product. Parnin et
al. (2005) highlighted that the speed to get
answers on these environments is very quick.
Regarding software development, this kind of
website promotes the knowledge exchange
among programmers via the internet, and
according to the authors it can substitute the
documentation when it is scarce or non-existent
(Treude et al., 2011).

 Wikis: A specific kind of document collection
in hypertext or collaborative software used to
create it. Dagenais and Robillard (2010) said
that among many advantages of this tool, it is an
easy way to create documentation which allows
anyone to contribute to the documentation.
However, through prior studies, authors affirm
that wikis are abandoned by the users because
they are not controlled environments compared
to others and, consequently, allow SPAM and
information inconsistency.

Beside the applications mentioned before,

Berglund and Priestley (2001) mentioned email lists
that as Q&A environments help the discussion process
for the development of software. Begel et al. (2010)
also highlighted the use of microblogs that have
reduced the number of characters in each interaction,
and because of that it is a tool used by the participants
to share links, make appointments, keep the developers
aware of the activities, etc

Social media present various advantages on
software engineering (Begel et al., 2010):
 Social networks normally provide a complete

environment for communication.
 On these social media, work teams of software

engineers expose their goals and ideas.
 Users who join social networks would know

how to communicate and coordinate to develop
a product successfully, requiring tools that assist
the management and transfer of knowledge, and
let mutual collaboration occur. The idea is that

the community increases because the knowledge
distribution becomes more efficient and quick,
minimizing misleading information among
coworkers who cannot meet in person.

The authors said that a condition for social media to

bring benefits is the planned use of those tools.
In open source communities, KM is knowledge

sharing and free access to information. For the sharing
step, the communication among the members has a
fundamental role, increasing and improving the work
group and then promoting a collaborative environment
(Porruvecchio et al, 2010).

6 SOFTWARE QUALITY IN OPEN

SOURCE DEVELOPMENT

Each open source project is different from the others
and has its own particulars (Porruvecchio et al, 2010).
However, the basis of these projects is the same: users
and communication among them. By the way, the
authos affirmed that users should be competent to
understand and contribute with the highest level of
details on these projects. Then, KM aims sharing of
knowledge and mutual help.

6.1 Knowledge Management

KM is an activity supported by learning processes by
capturing and reusing past experiences. It is a unique
activity because of the focus on each person and
his/her ability, which are systematically shared in the
organization (Parnin et al., 2005).

In the context of OSS development, sharing is the
way that more people can assist the development
process of software (Rus and Lindvall, 2002).

 The knowledge can be captured in many ways:
traditional manuals, videos, wikis, blogs etc. (Treude
and Storey, 2011).There are many kinds of knowledge,
and then a variety of tools should be used to deal with
this great source of knowledge.

In a study carried out by Porruvecchio et al. (2010),
an email list of developers of 70 Open source projects
that were hosted on SourceForge.net was analyzed.
The authors said that the understanding of
communication of members of this group can help to
improve efficiency and quality of projects. The results
showed that each member communicates to at least
one other user, that there are one or two developers
who assume the main roles on the project and that there
is one user who communicated to the whole
community. The last user has the role of managing the
knowledge among all community members once the
virtual environment became a learning space through
requests for explanations and/or others members’

assistance.
Therefore, the authors checked the importance of

peer support on these communities. Peer support
consists on a mutual helpful relation between two
members. Endres et al. (2007) affirmed that peer
support is fundamental for open source communities
and report its essentiality to increase knowledge
sharing.

Rus and Lindvall (2002) said that organizations
should use knowledge learned from past projects to
decrease time and cost in the development process of
new products. Although the authors noted this
affirmation for organizations of software development,
it can be applied to open source communities once
individual experience of users can be converted to
knowledge for the development of new projects.

Therefore, KM has a fundamental role in practices
of open source communities (Endres et al., 2007),
improving quality of performance, since they promote
an important contribution to build common knowledge
basis (Porruvecchio et al, 2010).

6.2 Users

A basic element for open source communities is the
user. It is through the users and their interests that these
communities develop their projects. Porruvecchio et
al. (2010) said that certain groups of people are always
part of a community and providing the bases around a
growing project.

Although the authors stated that participation in
open source community is open to everyone who
wishes, they highlight that control it is necessary. One
method pointed by them is the distribution of levels of
participation in the community: some users have more
permissions than others, but anyone who wants to join
the community is allowed. Then, a social structure is
pointed as a tool to accomplish this control (Berglund
and Priestley, 2001).

Porruvecchio et al. (2010) separated user group
into five levels: Users, Advanded Users, Errors
Repairers, Developers, and Manager.

Along the same creating thoughts of a social
structure in an open source community Spinellis and
Szyperski (2004) reports the Onion Model, which
divides users into four levels: common users, error
reporters, developers and core team?

Regardless of the social structure adopted in an
open source community, it is important to realize the
role of these users in those groups. Porruvecchio et al.
(2010) said that the developers discuss problems they
find during the development of a particular feature or
during a bug repair, or while users request help to solve
difficulties of using the software, or warn about errors
and bugs. Therefore, dealing with such a wide variety
of contributors, there is a great sharing of knowledge

and, consequently, the project tends to be more
powerful (Khanjani and Sulaiman, 2011).

According to Porruvecchio et al. (2010) and
Khanjani and Sulaiman (2011), the participation of all
kinds of users is encouraged as a practice that should
be encouraged on development environments,
regardless of the reasons that lead the user to interact
in these communities.

In a study carried out by Parnin et al. (2005), they
proposed a model of crowd documentation in a large
group of contributors which collaborate to the
documentation of API, the authors showed that the
documentation can emerge from questions and
answers. This also happens because the proposed
model encourages the participation of users through
the idea of awarding the best answer. Therefore, it
supports the process of quality assurance.

According to Dagenais and Robillar (2010), in a
study about how OSS documentation is created and
kept, the community is encouraged to join the written
process through questioning. These questions help to
repair bugs and then update the documentation. The
authors stated that community feedback is essential
because it helps to localize which part of the document
needs to be clarified.

However, Khanjani and Sulaiman (2011)
highlighted that to have many volunteers in open
source development requires a centralized
organization to coordinate activities and do
maintenance on the product. The author also stressed
that users help to improve the quality with more
correctness, completeness, safety, and quality
requirements, which justify the use of a social structure
proposed by Porruvecchio et al. (2010) or by (Spinellis
and Szyperski, 2004).

Therefore, for users to share knowledge, and
together, support the quality of the final product, the
communication is the starting point to develop an
efficient team (Porruvecchio et al., 2010).

6.3 Quality Assurance

Currently, software has been one of the most requested
products on the market. “The concern about quality has
become an essential requirement. This is a basic idea
to ensure software functionality with minimal errors,
defects and greater satisfaction on quality
expectations” (Maia, 2003).

Pressman (2000) said that the quality of software
is defined as the conformity to explicit functional
requirements and specified performance, following
standards for development of documents and follow
good practice of software engineering.

For open source development, developing with
quality depends on two factors: code revision and
testing data (Khanjani and Sulaiman, 2011). For
Shaikh and Ceron (2007), the access to the code is

fundamental for open source development, as it allows
the developers to have a high quality contribution and
makes the code available for anyone to analyze it and
detect bugs. To support quality the seeking of various
tools as emails’ list and tools of management settings
can be used (Khanjani and Sulaiman, 2011). However,
the authors say that when we think about quality, some
aspects should be considered: level of service to be
improved, productivity and satisfaction of final user. If
these aspects are considered in software development,
the system efficiency for users and developers will
increase, and productivity also, once users and
developers are motivated to develop better products
and to find problems on the code developed.

However, for Khanjani and Sulaiman (2011),
seeking process for quality assurance on this kind of
development has some problems:

 There is no formal design for OSS development
and poor designs have poor codes and therefore poor
quality. The authors state that the communication
process and an appropriate structure are important, and
it attracts developers to cooperate, but it is necessary
to be attractive;

 The lack of knowledge of community
participants to repair bugs;

 The quality can be affected by the lack of
documentation. The documentation is focused on the
programming style desired, which will assist new users
to know the system and understand the modifications
and evolution on the code.

Michlmayr et al. (2005) added problems of open

source development as lack of volunteers, whicj
consist in a problem that some projects need to deal,
mainly the unpopular ones. The majority of volunteers
are only aimed at the code development. There are not
many people who want to help with tests. Besides, the
communication is another problem which brings
negative impacts to quality, for example when bugs are
not correctly reported.

Regarding documentation on knowledge of
community members and communication among users
tend to help with solving previously reported
problems.

Berglund and Priestley (2001) said that the written
process of documentation of many projects can be
elaborated using discussion topics of users. These
topics guide the documentation providing information
and then the documentation obtained in the final
process is focused on the user and its quality tends to
increase. However, care must be taken to not transform
the documents on a repository, hindering the user to
find the desired information.

As a development perspective that states free code,
the communication among the members of these
communities needs to be facilitated (Porruvecchio et
al., 2010).

The connection among the members creates a
network in which sharing information facilitates goal
achievement and problem resolution (Porruvecchio et
al., 2010). In this way, KM becomes the basis to
promote sharing information as common practice in
these environments. The participants have a variety of
roles in open source communities, and their activities
are complementary: they trust each other to improve
the final product. It is important to maintain the
contact, share information and give/get feedback.
Raymond (1999) said that a high quality level must be
attributed to the level of relation between the members
of a community.

Management and knowledge transference are
challenging activities that are essential to integrate
new collaborators in a project (Treude and Storey,
2011). However the authors report a study which says
that the documentation is not always useful and is
almost always outdated, making knowledge
transference difficult.

The number of messages exchanged among the
members in a community is an indicator of success for
the project as it shows interest of the community on its
development. In this way, an effective communication
tool is fundamental in these environments
(Porruvecchio et al., 2010).

In a study carried out by Parnin and Treude (2011),
it was found that blogs are the most common means of
communication covering almost 90% of the subjects of
this theme. The authors analyzed the types of posts and
found that the majority were regarding tutorials
followed by experience reports. The analysis of the
posts also showed that 81% of the posts contained
comments, building interrelationships between authors
and users. This interaction resulted in improvements
on code and documentation.

Therefore, the importance of KM in development
environments was shown because it encourages the
sharing of information and then the good
communication among the members. Rus and
Lindvall, (2002) affirmed that sharing knowledge is a
risk prevention strategy to that is generally ignored.

7 CONCLUSION

This study aimed to present a discussion about free
software communities and KM in these communities,
concerning the process of open source software and its
peculiarities, to ensure the quality of the product
developed. The study was based on the purpose of CI
and KM, to input quality throughout the process of
software development on factors that are considered
primordial for this study, users and communication
among them.

Users are the main reason to open source

development exists. If they do not fell themselves
motivated and encouraged to make part of the open
source community, as mentioned, the final quality can
be affected. As many studies reported, it is important
to encourage users’ participation, and for that, to create
a hierarchy among the users to determine their
participation and efficient ways to promote good
communication among the community participants.

The communication among the community
members are fundamental to the DDS and thus, it
needs some ways to provide the interaction among
users. Through several social midias, users exchange
knowledge, and it can improve the quality of the
software. So, KM, besides just promoting the
communication among member of the community,
must support the knowledge exchange, which can be
used for diverse purposes, but it is worth highlighting
that do not mind its purpose, its existence is a factor
that assists the process of quality assurance.

Quality Assurance is an activity that must be
considered throughout the development process, in
free or proprietary software. In this way, mechanisms
that promote the interaction among users should be
able to promote the exchange knowledge.

REFERENCES

Aberdour, M. 2007. Achieving Quality in Open-Source

Software. In Software, IEEE , vol.24, no.1, pp.58,64.

Acuna, S. T., Castro, J. W. and Dieste, O. 2012. Juristo, N.,

A systematic mapping study on the open source software

development process, Evaluation & Assessment in

Software Engineering (EASE 2012), 16th International

Conference on , vol., no., pp.42,46, 14-15.

Audy, J. and Priklandnicki, R. 2008. Desenvolvimento

Distribuído de software. Rio de Janeiro, Elsevier.

<http://books.google.com.br/books?id=znis1KYslRAC

&printsec=frontcover#v=onepage&q&f=false>

Accessed in 29/03/2013.

Bayrak, C. and Davis, C. 2003. The relationship between

distributed systems and open software development.

Commun. ACM 46, 12 (December 2003),99-102.

Begel, A., DeLine, R. and Thomas Zimmermann. 2010.

Social media for software engineering. In Proceedings of

the FSE/SDP workshop on Future of software

engineering research (FoSER '10). ACM, New York,

NY, USA, 33-38.

Berglund. E. and Priestley, A. 2001. Open-source

documentation: in search of user-driven, just-in-time

writing. In Proceedings of the 19th annual international

conference on Computer documentation (SIGDOC '01).

ACM, New York, NY, USA, 132-141.

Dagenais, B. and Robillard, M. P. 2010. Creating and

evolving developer documentation: understanding the

decisions of open source contributors. In Proceedings of

the eighteenth ACM SIGSOFT international symposium

on Foundations of software engineering (FSE '10).

ACM, New York, NY, USA, 127-136.

Endres, M. L., , Endres, S. P., Chowdhury, S. K. and

Intakhab Alam 2007. Tacit knowledge sharing, self-

efficacy theory, and application to the Open Source

community. In Journal of Knowledge Management, Vol.

11 Iss: 3, pp.92 - 103.

GNU, 2013. O que é Software Livre? <

http://www.gnu.org/philosophy/free-sw.html> Accessed

in 14/06/2013.

Hintikka, K. A. 2008. Web 2.0 and the collective intelligence.

In Proceedings of the 12th international conference on

Entertainment and media in the ubiquitous era

(MindTrek '08). ACM, New York, NY, USA, 163-166.

Hwang, Y. C., Yuan, S. T. and Weng, J. H., 2009. A study

of the impacts of positive/negative feedback on

collective wisdom– case study on social bookmarking

sites. In Journal Information Systems Frontiers,

Springer, Volume 13, Issue 2 , pp 265-279.

Khanjani, A. and Sulaiman, R. 2011. The process of quality

assurance under open source software development,

Computers & Informatics (ISCI). In IEEE Symposium

on , vol., no., pp.548,552, 20-23 March 2011

Lethbridge, T.C., Singer, J. and Forward, A. 2003. How

software engineers use documentation: the state of the

practice. In Software, IEEE , vol.20, no.6, pp.35,39.

Maia, J. R. C. 2003. Garantia a Qualidade de Projeto

Orientado a Objeto. Project Management Institute. Santa

Catarina.<http://www.euax.com.br/system/attachments/

4/original/2006.013Metricas_software.pdf?1265047553

> Accessed in 10/09/2011.

Malone, T. W., Laubacher, R. and Dellarocas, C. 2009.

Harnessing Crowd: Mapping the Genome of Collective

Intelligence. Working Paper no. 2009-001,MIT Center

for Collective Intelligence.

Michlmayr, M., Hunt, F., Probert, D. 2005. Quality Practives

and Problems in Free Software Projects. In Proceedings

of the 1st International Conference on Open Source

Systems. Genova, Italy, 24-28. <

http://oss2005.case.unibz.it/Papers/47.pdf:> Accessed in

08/06/2013.

Noll, J. 2008. Requirements Acquisition in Open Source

Development: Firefox 2.0 In IFIP International

Federation for Information Processing, Volume 275;

Open Source Development, Communities and Quality;

Barbara Russo, Ernesto Damiani, Scott Hissam, Björn

Lundell, Giancarlo Succi; (Boston: Springer), pp. 69–79.

Noll, J. and Liu, W. 2010. Requirements elicitation in open

source software development: a case study. In

Proceedings of the 3rd International Workshop on

Emerging Trends in Free/Libre/Open source Software

Research and Development (FLOSS '10). ACM, New

York, NY, USA, 35-40.

OSI, 2013. The Open Source Definition.

<http://opensource.org/docs/osd> Accessed in

14/06/2013.

Parnin, C. and Treude, C. 2011. Measuring API

documentation on the web. In Proceedings of the 2nd

International Workshop on Web 2.0 for Software

Engineering (Web2SE '11). ACM, New York, NY, USA,

25-30.

Parnin, C., Treude, C. Grammel, L. and Storey, M. 2005.

Crowd Documentation: Exploring the Coverage and the

Dynamics of API Discussions on Stack Overflow

<http://www.cc.gatech.edu/~vector/papers/CrowdDoc-

GIT-CS-12-05.pdf> Accessed in 15/05/2013.

Porruvecchio, G., Uras, S. and Concas, G. 2010. Knowledge

management aspects in open source communities. In

Proceedings of the 9th WSEAS international conference

on Telecommunications and informatics (TELE-

INFO'10), V. Niola, J. Quartieri, F. Neri, A. A.

Caballero, F. Rivas-Echeverria, and N. Mastorakis

(Eds.). World Scientific and Engineering Academy and

Society, Stevens Point, Wisconsin, USA, 52-60.

Pressman, R. S., 2000. Software Engineering – A

Practitioner’s Approach, 5º ed. McGraw-Hill

International, London.

Raymond, E. S. 1999. The Cathedral and the Bazaar.

Sebastopol, CA: O’Reilly & Associates.

Rus, I. and Lindvall, M. 2002. Knowledge management in

software engineering, Software. In IEEE,vol.19, no.3,

pp.26,38.

Scacchi, W. 2002. Understanding the requirements for

developing open source software systems. Software. In

IEE Proceedings - , vol.149, no.1, pp.24,39.

Shaikh, S. A. and Ceron, A. 2007. Towards a quality model

for Open source Software (OSS). <

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1

.1.97.1973&rep=rep1&type=pdf.> Accessed in

01/06/2013.

Sommerville, 2007. “Engenharia de Software São Paulo”.

Pearson Adisson-Wesley. Brazil, 7th edition.

Spinellis, D. and Szyperski, C. 2004. How is open source

affecting software development?. In Software, IEEE ,

vol.21, no.1, pp.28,33. DOI: 10.1109/MS.2004.1259204

Tosi, D. and Tahir, A. 2013. A Survey on How well-know

Open Source Software Projects are Tested. In

Communications in Computer and Information Science.

Springer, Volume 170, 42-57.

Treude, C. and Storey, M. 2011. Effective communication of

software development knowledge through community

portals. In Proceedings of the 19th ACM SIGSOFT

symposium and the 13th European conference on

Foundations of software engineering(ESEC/FSE '11).

ACM, New York, NY, USA, 91-101.

Treude, C., Barzilay, O. and Margaret-Anne Storey. 2011.

How do programmers ask and answer questions on the

web? (NIER track). In Proceedings of the 33rd

International Conference on Software Engineering

(ICSE '11). ACM, New York, NY, USA, 804-807.

Zhao, L. and Elbaum, S. 2000. A survey on quality related

activities in open source. In SIGSOFT Softw. Eng. Notes

25, 3 (May 2000), 54-57.

