
YASA: Yet Another Time Series Segmentation
Algorithm for Anomaly Detection in Big Data

Problems

Luis Mart́ı1, Nayat Sanchez-Pi2, José Manuel Molina3, and
Ana Cristina Bicharra Garcia4

1 Dept. of Electrical Engineering, Pontif́ıcia Universidade Católica do Rio de Janeiro,
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Abstract. Time series patterns analysis had recently attracted the at-
tention of the research community for real-world applications. Petroleum
industry is one of the application contexts where these problems are
present, for instance for anomaly detection. Offshore petroleum platforms
rely on heavy turbomachines for its extraction, pumping and generation
operations. Frequently, these machines are intensively monitored by hun-
dreds of sensors each, which send measurements with a high frequency
to a concentration hub. Handling these data calls for a holistic approach,
as sensor data is frequently noisy, unreliable, inconsistent with a priori
problem axioms, and of a massive amount. For the anomalies detection
problems in turbomachinery, it is essential to segment the dataset avail-
able in order to automatically discover the operational regime of the
machine in the recent past. In this paper we propose a novel time series
segmentation algorithm adaptable to big data problems and that is ca-
pable of handling the high volume of data involved in problem contexts.
As part of the paper we describe our proposal, analyzing its computa-
tional complexity. We also perform empirical studies comparing our algo-
rithm with similar approaches when applied to benchmark problems and
a real-life application related to oil platform turbomachinery anomaly
detection.

Keywords: Time series segmentation, anomaly detection, big data, oil
industry application
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1 Introduction

The problem of finding patterns in data that do not conform to an expected
behavior, is known as the anomaly detection problem[1]. Hence, unexpected
patterns or instances are often referred as anomalies [2], outliers [3], faults [4]
–just to mention a few– depending on the application domain.

The importance of anomaly detection is a consequence of the fact that anoma-
lies in data translate to significant actionable information in a wide variety of
application domains. The correct detection of such types of unusual information
empowers the decision maker with the capacity to act on the system in order to
correctly avoid, correct, or react to the situations associated with them.

One of such cases is the detection of anomalies in turbomachinery installed
in off-shore petroleum extraction platforms from a centralized company con-
trol hub. Recent history shows us how important a correct handling of these
equipment is as failures in this industry has a dramatic economical, social and
environmental impact.

Dealing with this problem calls for a comprehensive approach, as sensor data
is frequently noisy, unreliable, inconsistent with a priori problem axioms. Fur-
thermore, the amount of data to process is frequently vast upon as one platform
has several turbomachines, that, on average, are monitored by more than 250
sensors, which are sampled at a relatively high-frequency.

Therefore, in this case, we are also facing a big data problem as the idea
is to run a detection analysis over these data in an online fashion. In terms
of social goods, big data uses concepts from non-linear system identification to
reveal interesting patterns about anomaly events, energy usage and mechanical
performance which can potentially help performing predictions of outcomes and
behaviors to reduce fuel costs, maintenance costs, and improve safety.

One additional characteristic of this problem is these machines have different
operational profiles. For example, they are used at different intensities or throttle
depending on the platform exploitation profile. Therefore, in order to correctly
detect future anomalies it is essential to segment the dataset available in order
to automatically discover the operational regime of the machine in the recent
past.

Time series segmentation [5] methods can be classified as explicit, implicit, or
hybrid. Implicit methods produce high quality segmentation, but are slow. This
type of segmentation method is one in which the application phase calculates
the error of a given segmentation. The error is passed back to the segmentation
phase and is then used to improve the segmentation. On the other hand, the
explicit methods are fast but they produce lower quality segmentation results.
The need of a fast and quality method for real-time applications became the
motivation of this work.

In this work, we propose a fast and high quality segmentation algorithm to
improve results in the anomaly detection problem that is currently used in the
oil extraction platform supervision problem described above. The remainder of
this paper is organized as following. In the next section, we discuss some related
work. Subsequently, we describe our segmentation algorithm proposal in detail.
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After that, we present a case study for offshore oil platform turbomachinery
sensor data segmentation. This case study is used to empirically compare our
approach with current state-of-the-art alternatives in terms of segmentation ac-
curacy and computational cost. Finally on Section six, some conclusive remarks
and directions for future work are presented.

2 Foundations

In the problem of finding frequent patterns, the primary purpose of time series
segmentation is dimensionality reduction. For the anomalies detection problems
in turbomachineries, it is essential to segment the dataset available in order to
automatically discover the operational regime of the machine in the recent past.
There is a vast work done in time series segmentation. But before start citing
them, we state a segmentation definition and describe the available segmentation
method classification.

In general terms, a time series can be expressed as a set of time-ordered
possibly infinite measurements [6], S, such that,

S = {〈s0, t0〉 , 〈s1, t1〉 , . . . 〈si, ti〉 , . . .} , i ∈ N+;∀ti, tj : ti < tj if i < j . (1)

In practice, time series frequently have a simpler definition as measurements
are usually obtained at equal time intervals between them. This type of time
series is known as regular time series. In this case, the explicit reference to time
can be dropped and exchanged a order reference index, leading to a simpler
expression

S = {s0, s1, . . . si, . . .} , i ∈ N+ . (2)

The use of regular time series is so pervasive that the remainder of this paper
will deal only with them. Henceforth, we the term time series will be used to
refer to a regular time series.

Depending on the application, the goal of the segmentation is used to lo-
cate stable periods of time, to identify change points, or to simply compress
the original time series into a more compact representation. Although in many
real-life applications a lot of variables must be simultaneously tracked and mon-
itored, most of the segmentation algorithms are used for the analysis of only one
time-variant variable. There is a vast literature about segmentation methods for
different applications. Basically, there are mainly three categories of time series
segmentation algorithms using dynamic programming. Firstly, sliding windows
[7, 8] top-down [9], and bottom-up [10] strategies. The sliding windows method
is a purely implicit segmentation technique. It consists of a segment is grown
until it exceeds some error bound. This process is repeated with the next data
point not included in the newly approximated segment.

However, like all implicit methods, it is extremely slow and not useful for
real-time applications, its complexity is O(Ln). Top-down methods are those
where the time series is recursively partitioned until some stopping criteria is
met. This method is faster than the sliding window method above, but it is
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still slow, the complexity is O(n2K). And the bottom-up starts from the finest
possible approximation and segments are merged until some stopping criteria is
met. It produces similar results to top-down algorithms but are faster, O(Ln).

Later, during the process of approximating a time series with straight lines,
there are at least two ways of finding the approximating line: linear interpolation
and linear regression [11]. Linear interpolation tends to closely align the endpoint
of consecutive segments, giving the piecewise approximation a “smooth” look. In
contrast, piecewise linear regression can produce a very disjointed look on some
datasets. However, the quality of the approximating line, in terms of Euclidean
distance, is generally better in the regression approach [5].

There also, more novel methods for instance those using clustering for seg-
mentation. The clustered segmentation problem is clearly related with the time
series clustering problem [12] and there are also several definitions for time se-
ries [13, 14]. One natural view of segmentation is the attempt to determine which
components of a data set naturally ”belong together”.

There exist two classes of algorithms for solving the clustered segmentation
problem: distance-based clustering of segmentations that measure distance be-
tween sequence segmentations and we employ a standard clustering algorithm
(e.g.,k-means) on the pair-wise distance matrix. The second class consists of
two randomized algorithms that cluster sequences using segmentations as ”cen-
troids”. In particular, we use the notion of a distance between a segmentation and
a sequence, which is the error induced to the sequence when the segmentation is
applied to it. The algorithms of the second class treat the clustered-segmentation
problem as a model selection problem and they try to find the best model that
describes the data.

There also methods considering multiple regression models.In [15] it is con-
sidered a segmented regression model with one independent variable under the
continuity constraints and studied the asymptotic distributions of the estimated
regression coefficients and change-points. In [16–18] is considered some special
cases of the model studied cited before, and provided more details on distribu-
tional properties of the estimators.

Bai [19–21] considered a multiple regression model with structural changes,
the model without the continuity constraints at the change-points, and studied
the asymptotic properties of the estimators.

3 YASA: Yet Another Segmentation Algorithm

In this section we introduce a novel and fast algorithm for time series segmen-
tation. Besides the obvious purposed of obtaining a segmentation method that
produces low approximation errors another set of guidelines were observed while
devising it. They can be summarized as:

– Low computational cost : The application context calls for algorithms capa-
ble of handling large amounts of data and that scale properly as the those
amounts are increased. Most current segmentation algorithms have such a
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computational complexity that impairs them to correctly tackle the problems
of interest.

– Easy parameterization: one important drawback of current approaches is
that their parameters may be hard so set by end users. In our case we have
as main parameter is the significance test threshold, which is a very good
understood and easy to gasp feature.

The YASA algorithm is presented in Figure 1 in schematic form. It is best
understood when presented in recursive form, as it goes by computing a linear
regression with the time series passed as parameter. A call to the segmentation
procedure first checks if the current level of recursion is acceptable. After that it
goes by fitting a linear regression to the time series data. If the regression passes
the linearity statistical hypothesis test then the current time series is returned
as a unique segment.

If the regression does not models correctly the data it means that it is nec-
essary to partition the time series in at least two parts that should be further
segmented. The last part of YASA is dedicated to this task. It locates the time
instant where the regression had the larger error residuals. It also warranties
that that time instant does not creates a too-short time series chunk. Once an
adequate time instant is located located and used as split point to carry out the
segmentation the parts of the time series located at both sides of it.

4 Case Study in Offshore Oil Process Plant

Equipment control automation that includes sensors for monitoring equipment
behavior and remote controlled valves to act upon undesired events is nowadays
a common scenario in the modern offshore oil platforms. Oil plant automation
physically protects plant integrity. However, it acts reacting to anomalous con-
ditions. Extracting information from the raw data generated by the sensors,is
not a simple task when turbomachinery is involved.

Turbomachinery, in mechanical engineering, describes machines that trans-
fer energy between a rotor and a fluid, including both turbines and compressors
[22]. While a turbine transfers energy from a fluid to a rotor, a compressor
transfers energy from a rotor to a fluid. The two types of machines are governed
by the same basic relationships including Newton’s second Law of Motion and
Euler’s energy equation for compressible fluids. Centrifugal pumps are also tur-
bomachines that transfer energy from a rotor to a fluid, usually a liquid, while
turbines and compressors usually work with a gas.

Any devices that extracts energy from or imparts energy to a continuously
moving stream of fluid (liquid or gas) can be called a Turbomachine. Elaborat-
ing, a turbomachine is a power or head generating machine which employs the
dynamic action of a rotating element, the rotor; the action of the rotor changes
the energy level of the continuously flowing fluid through the machine. Turbines,
compressors and fans are all members of this family of machines. In contrast to
Positive displacement machines especially of the reciprocating type which are
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1: function SegmentData(S(j)
tmax,t0

, ρmin, lmax, smin, l)
Parameters:
. S(j)

tmax,t0
, time series data of sensor j corresponding to time interval [t0, tmax].

. ρmin ∈ [0, 1], minimum significance for statistical hypothesis test of linearity.

. lmax > 0, maximum levels of recursive calls.

. smin > 0, minimum segment length.
Returns:
. Φ := {φ1, . . . , φm}, data segments.

2: if l = lmax then

3: return Φ =
{
S(j)

tmax,t0

}
4: end if
5: Perform linear regression,

{m, b} ← LinearRegression(S(j)
tmax,t0

).

6: if LinearityTest(S(j)
tmax,t0

,m, b) > ρmin then

7: return Φ =
{
S(j)

tmax,t0

}
.

8: end if
9: Calculate residual errors,

{e0, . . . , emax} = Residuals(S(j)
tmax,t0

,m, b)

10: ts ← t0.
11: while max ({e0, . . . , emax}) > 0 and ts /∈ (t0 + smin, tmax − smin) do
12: Determine split point, ts = arg maxt {et}.
13: end while
14: if ts ∈ (t0 + smin, tmax − smin) then

15: Φleft = SegmentData(S(j)
ts,t0

, ρmin, lmax, smin, l + 1).

16: Φright = SegmentData(S(j)
tmax,ts

, ρmin, lmax, smin, l + 1).
17: return Φ = Φleft ∪ Φright.
18: end if
19: return Φ =

{
S(j)

tmax,t0

}
.

20: end function

Fig. 1: Pseudocode of the proposed algorithm.

low speed machines based on the mechanical and volumetric efficiency consider-
ations, majority of turbomachines run at comparatively higher speeds without
any mechanical problems and volumetric efficiency close to hundred per cent.

Turbomachines can be categorized on the basis of the direction of energy
conversion:

– Absorb power to increase the fluid pressure or head (ducted Fans, compres-
sors and pumps).

– Produce power by expanding fluid to a lower pressure or head (hydraulic,
steam and gas turbines).
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4.1 Problem Formalization

Assuming independence between turbomachines we can deal with each one sep-
arately. Although, in practice, different machines do affect each other, as they
are interconnected, for the sake of simplicity we will be dealing with one at a
time.

Using that scheme we can construct an abstract model of the problem. A
given turbomachine, M, is monitored by a set of m sensors s(j) ∈ M, with
j = 1, . . . ,m. Each of these sensors are sampled at regular time intervals in
order to produce the time series

S(j)tmax,t0 :=
{
s
(j)
t

}
, t0 ≤ t ≤ tmax . (3)

Using this representation and assuming that sensors are independent, the
problem of interest can be expressed as a two-part problem: (i) predict a future
anomaly in a sensor, and; (ii) decision making from anomaly predictions. This
can be expressed more formally as:

Definition 1 (Sensor Anomaly Prediction). Find a set of anomaly predic-
tion functions, A(j)(·), such that

A(j)

(
S(j)t,t−∆t

∣∣∣∣Ŝ(j)tmax,t0

)
=


1 predicted anomaly

0 in other case

, (4)

that is constructed using a given reference (training) set of sensor data, Ŝ
(j)

tmax,t0 ,
and determines if there will be a failure in the near future by processing a sample

of current sensor data S(j)t,t−∆t, with tmax < t − ∆t < t and, generally, ∆t �
tmax − t0.

Using those functions the second problem can be stated as:

Definition 2 (Machine Anomaly Alarm). For each turbomachine M, ob-
tain a machine alarm function

FM

(
a
(1)
t , . . . , a

(m)
t

∣∣∣wM) =


1 alarm signal

0 in other case

, (5)

where a
(j)
t = A(j)

(
S(j)t,t−∆t

)
and the weights vector, wM =

{
w(1), . . . , w(m)

}
represents the contribution –or relevance– of each sensor to an alarm firing de-
cision.

It must be noted that, although we have expressed these problems in a crisp
(Boolean) form they can be expressed in a continuous [0, 1] form suitable for
application of fuzzy logic or other forms of uncertainty reasoning methods.
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(a) Homogeneous time series.
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(b) Unstable/noisy time series.
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(c) Multi-modal series
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(d) Highly unstable time series, probably
caused by faulty sensors.

Fig. 2: A sample of the four main types of time series contained in the dataset.
We have marked with color changes the moments in which the machine was
switched on/off.

In order to synthesize adequate A(j) and FM it is necessary to identify the
different operational modes of the the machine. Knowing the operational modes
of the machine enables the creation of A(j) and FM functions —either explicitly
or by means of a modelling or machine learning method— that correctly responds
to each of modes.

4.2 Comparative Experiments

YASA is been currently applied with success to the problem of segmenting tur-
bomachine sensor data of a major petroleum extraction and processing conglom-
erate of Brazil. In this section we present an part of the experimental comparison
involving some of the current state-of-the-art methods and our proposal that was
carried out in order to validate the suitability of our approach. Readers must
be warned that the results presented here had to be transformed in order to
preserve the sensitive details of the data.

In this case in particular we deal with a dataset of measurements taken with
a five minute frequency obtained during the first half of 2012 from more than
250 sensors connected to an operational turbomachine. An initial analysis of
the data yields that there are different profiles or patterns that are shared by
different sensors. This is somewhat expected as sensors with similar purposes or
supervising similar physical properties should have similar readings characteris-
tics.

Figure 2 displays the four shared time series profiles found in the dataset.
On hand hand, we have smooth homogeneous time series that are generally as-
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(a) Errors for homogeneous
series.
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(b) Errors for multi-modal
series.
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(c) Errors for noisy series.

Fig. 3: Box plots of the root mean squared errors yielded by the Bottom-Up (B-
U), Top-Down (T-D), adaptive Top-Down (ATD), Sliding Window and Bottom-
up (SWAB) and our proposal (YASA).Data has been transformed for sensitivity
reasons.

sociated with slow-changing physical properties. Secondly, we found fast chang-
ing/unstable sensor readings that could be a result of sensor noise or unstable
physical quantity. There is a third class of time series which exhibit a clear change
in operating profile attributable to different usage regimes of the machine or the
overall extraction/processing process.

Using this dataset we carried out an study comparing four of the main seg-
mentation algorithms and our proposal. In particular we compare the Bottom-Up
[10], Top-Down [23], adaptive Top-Down [9] and Sliding Window and Bottom-up
algorithms [5].

The need for comparing the performance of the algorithms when confronted
with the different sensor data prompts the use of statistical tools in order to reach
a valid judgement regarding the quality of the solutions, how different algorithms
compare with each other and their computational resource requirements. Box
plots [24] are one of such representations and have been repeatedly applied in
our context. Although box plots allows a visual comparison of the results and,
in principle, some conclusions could be deduced out of them.

Figure 3 shows the quality of the results in terms of the mean squared error
obtained from the segmentation produced by each algorithm in the form of box
plots. We have grouped the results according to the class of sensor data for
the sake of a more valuable presentation of results. The main conclusion to be
extracted from this initial set of results is that our proposal was able to achieve
a similar performance –and in some cases a better performance– when compared
with the other methods.

The statistical validity of the judgment of the results calls for the applica-
tion of statistical hypothesis tests. It has been previously remarked by different
authors that the Mann–Whitney–Wilcoxon U test [25] is particularly suited for
experiments of this class. This test is commonly used as a non-parametric method
for testing equality of population medians. In our case we performed pair-wise
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Table 1: Results of the statistical hypothesis tests. Cells marked in red are cases
where no statistically significant difference was observed. Green cells mark cases
where results of both algorithms was statistically homogeneous.

(a) Tests on the segmentation errors.

T-D B-U ATD SWA YAS

Homogeneous series

Top-Down · – + + +
Bottom-Up · – – –

Adaptive T-D · – +
SWAB · +
YASA ·

Multi-modal series

Top-Down · – + + +
Bottom-Up · – – –

Adaptive T-D · – +
SWAB · +
YASA ·

Noisy series

Top-Down · + – + +
Bottom-Up · – – –

Adaptive T-D · – +
SWAB · +
YASA ·

All data

Top-Down · + – + +
Bottom-Up · – – –

Adaptive T-D · – +
SWAB · +
YASA ·

(b) Tests on the CPU time required.

T-D B-U ATD SWA YAS

Homogeneous series

Top-Down · – – – –
Bottom-Up · – – –

Adaptive T-D · + –
SWAB · –
YASA ·

Multi-modal series

Top-Down · – – – –
Bottom-Up · – – –

Adaptive T-D · + –
SWAB · –
YASA ·

Noisy series

Top-Down · – – – –
Bottom-Up · – – –

Adaptive T-D · + –
SWAB · +
YASA ·

All data

Top-Down · – – – –
Bottom-Up · – – –

Adaptive T-D · + –
SWAB · –
YASA ·

tests on the significance of the difference of the indicator values yielded by the
executions of the algorithms. A significance level, α, of 0.05 was used for all tests.

Table 1a contains the results of the statistical analysis which confirm the
judgements put forward before.

Comparing performance is clearly not enough as one of the leit motifs of
this work is to provide a good and fast segmentation algorithm. That is why we
carry out a similar study to the previous one, this time focusing on the amount
of CPU time required by each algorithm. Figure 4 summarizes this analysis. It is
visible how our approach required less computation to carry out the task. Table
1b allows to assert this analysis with the help of statistical hypothesis tests, as
explained in the previous analysis.
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(a) Errors for homogeneous
series.
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(b) Errors for multi-modal
series.
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(c) Errors for noisy series.

Fig. 4: Box plots of the CPU time needed by the Bottom-Up (B-U), Top-Down
(T-D), adaptive Top-Down (ATD), Sliding Window and Bottom-up (SWAB)
and our proposal (YASA). Data has been transformed for sensitivity reasons.

5 Final Remarks

In this work we introduced a novel segmentation online segmentation method
specially devised to deal with massive or big data problems. We have applied
this algorithm to the segmentation sensor measurements of turbomachines used
as part of offshore oil extraction and processing plants. In the problem under
study, our approach was able to yield adequate results at a lower computational
cost.

Although we have introduced and presented the YASA algorithm focusing
of the segmentation problem itself, it must be pointed out that the algorithm is
currently deployed as part of a larger system that rely of the segmentation to
train a set of one-class support vector machine classifiers capable. These clas-
sifiers are used to detect anomalies in turbomachinery platform operation. The
global system is currently in use by a major petroleum industry conglomerate
of Brazil and is to be presented as a whole in a forthcoming paper.

Further work in this direction is called for and is currently being carried
out. An important direction is the formal understanding of the computational
complexity of the proposal. We also intend to extend the context of application
to other big data application contexts.
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