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Abstract. Condition-based maintenance (CBM) seeks to implement a policy 

wherein maintenance management decisions are based on the identification of 

the current condition of monitored machinery. It involves not only collecting 

data but also comparing them with reference values and, if necessary generating 

alerts based on preset operational limits. This approach is adopted by a system 

responsible for monitoring turbomachinery plants in oil platforms, to identify 

when a machine deserves special attention. With the purpose of extending the 

functionalities of such system for dynamically adjusting the detection limits and 

thus improving the precision in setting the appropriate time for maintenance, we 

proposed an approach based on the identification of clusters of correlated varia-

bles and multiple regression analysis. In this paper, we describe our approach 

and discuss our experience in implementing such functionalities. 

Keywords: Condition-based maintenance; Multiple regression analysis; Varia-
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1 Introduction 

Maintenance activities fall into two broad categories, which are corrective mainte-

nance and preventive maintenance. Corrective maintenance, also known as break-

down maintenance, is performed as an action to restore the functional capabilities of 

failed or malfunctioned equipment or systems. It is a reactive approach triggered by 

the unscheduled abnormal event of an equipment failure. This kind of maintenance 

policy usually imposes elevated costs due to the high cost of restoring equipment to 

an operable condition under emergency. There may be extra costs due to secondary 

damage and safety/health hazards inflicted by the failure and to penalties associated 

with lost production. On the other hand, preventive maintenance is the approach de-

veloped to avoid this kind of waste (Tsang, 1995). 



In oil platforms, the equipment used for oil extraction and exploration operates un-

der severe conditions. High pressure, high temperatures, aggressive working condi-

tions, high throughput and long shifts can have a critical effect on any component. In 

this scenario, the turbomachinery systems are the most sensitive equipment, since any 

interruption causes total shutdown of platform activity, resulting in extremely high 

financial cost (Ferraz and Garcia, 2014). As such, to avoid interruption in tur-

bomachinery operation, it is very important to carry out preventive maintenance that 

is scheduled to occur during circumstances and at times when there is a high degree of 

control. 

There are different approaches to preventive maintenance. Time-based mainte-

nance (TBM), also known as periodic-based maintenance, is the most common ap-

proach. Following this approach, maintenance is performed to prevent or retard fail-

ures at hard time intervals regardless of other information that may be available when 

the preset time occurs. Such task also requires an intrusion into the equipment, there-

by rendering it out of service until the task is completed (Tsang, 1995). An inadequate 

TBM strategy, however, may lead to unnecessarily high downtime – if it is carried out 

earlier than needed –, or accidental breakdown of a machine – if it is performed too 

late –, in both cases causing loss of money (Pham e Yang, 2009). Hence, maintenance 

optimization is a topic of great interest to researchers for its significant appeal to the 

safety and financial aspects involved (Marseguerra et al., 2002). 

When the system condition can be continuously monitored, a Condition-Based 

Maintenance (CBM) strategy can be implemented, according to which the decision of 

maintaining the system is taken dynamically, based on the observed condition of the 

system (Marseguerra et al., 2002). CBM is assessed as the most effective technology 

that can identify incipient faults before they become critical. While other approaches 

such as corrective and time-based maintenance have shown to be costly in many ap-

plications, CBM enables more accurate planning of maintenance (Pham e Yang, 

2009).  

CBM seeks to implement a policy wherein maintenance management decisions are 

based on the identification of the current condition of monitored machinery (Em-

manouilidis et al., 2006). Nowadays, advanced equipment and sensor technologies 

provide a great variety of timely data to reveal a machine’s condition. Such data has 

to be analyzed in real-time to allow observing and evaluating the equipment condition 

in a more timely fashion (Chen and Wu, 2007). Condition monitoring data are very 

versatile. It can be vibration data, acoustic data, oil analysis data, temperature, pres-

sure, moisture, humidity, weather or environment data, etc (Jardine et al., 2006).  

Condition monitoring involves not only collecting such data but also comparing it 

with reference values and, if necessary generating alerts based on preset operational 

limits (Niu and Yang, 2010). In general, such operational limits are established based 

on manufacturers’ recommendations, and utility and industry operating experience. 

However, as machines may operate in different environments, and thus, subject to 

different work conditions, in some situations such nominal values may not be the 

most adequate references. Therefore, artificial intelligence techniques may be useful 

to adjust such operational limits to the specific conditions of a machinery apparatus.  



In this work we discuss our experience in a project for implementing new func-

tionalities for a system responsible for monitoring turbomachinery plants in oil plat-

forms. This system collects data from different sensors distributed all over a plant, 

each representing a variable. The collected signals are compared with a set of lower 

and upper reference values and when they cross pre-defined limits, the respective 

equipment may go under maintenance.  

Our project aimed at developing new computational algorithms to be aggregated as 

new functionalities to the original system, introducing a degree of techniques based 

on artificial intelligence in the analysis of the turbomachine variables. We proposed 

several approaches with the purpose of dynamically adjusting the detection limits and 

thus improving the precision in setting the appropriate time for maintenance. In this 

work we focus on an approach based in the identification of clusters of correlated 

variables. The correlation coefficients are used to assess the influence of the variables 

in one another, thus allowing to calculate narrower limits based on this influence. In 

this paper, we discuss the fundaments for this novel approach and how it was imple-

mented. In the next section, we present the scenario of our project. In Section 3, we 

present some fundamental concepts involved in our solution. In Section 4, we explain 

how the approach was implemented. In Section 5, we describe a case study. Finally, 

in Section 6 we draw our conclusions. 

2 Scenario 

In this work we discuss our experience in a project for implementing new func-

tionalities for a system that consists in a center for monitoring the health of turbo 

machinery plants in oil platforms operated by a large energy corporation. The overall 

monitoring is performed via the remote monitoring of a set of variables collected from 

several sensors distributed along the plants, applying a Condition-Based Maintenance 

(CBM) strategy. 

In the referred system, abnormal conditions of the machines are detected when any 

of the variables related with a given machine go above or below some predefined 

values. Such values define a set of alarms, in which there are 3 levels above (high, 

very high and critically high), and 3 levels below (low, very low and critically low). 

Only when the value of a monitored variable crosses one of the defined levels, the 

operator will check the variable. Because there is no continuous monitoring, many 

transients are not perceived at the time to issue a warning. The large number of varia-

bles that must be visually monitored by the operator causes the scan time to become 

too long. 

As usual, at beginning of operation, such operational limits were set based on 

manufacturers’ recommendations. As the machines operate subject to different work 

conditions in each plant of each platform, such limits were gradually and manually 

adjusted along time, based on the operators experience. This option reflects believes 

of the operators, the thresholds could be adjusted to alert a long time or a little time 

before the effective operator interference. 



The purpose of our project was to develop new computational algorithms to be ag-

gregated as new functionalities to the original system, introducing a degree of tech-

niques based on Artificial Intelligence in the analysis of the turbomachine variables. 

Such functionalities should make the system capable of making more accurate and 

faster problem identification, contributing to increase the availability of the platforms 

main compression and generation systems, thus reducing losses in the oil and gas 

production. The main purpose was propose algorithms to automatically and dynami-

cally adjust the reference limits for each variable. 

In the specification of the new functionalities, a set of functional requirements 

were proposed by the client. Among them, the following are tackled in this paper: 

 R1: The project should provide a functionality to calculate new monitoring limits 

of a variable, based on the historical values of such variable. 

─ R1.1 The user should choose the variables for having new limits calculated; 

─ R1.2 The user should decide for the adoption or not of the new limit calculated. 

 R2: The project should provide a functionality to calculate new monitoring limits 

of a variable based on the influence other variables may have on this one. 

─ R2.1: The user should define, based on their experience. a set of variables that 

he believes are strongly correlated. This option is related to time of reaction, 

some of the users prefer alerts with a comfortable time and others on a limit that 

they have to interfere; 

─ R2.2: Along the process, the user should be capable of defining (or redefining 

default values) each parameter involved in such calculation. 

In order to achieve such purposes, the project team had to surpass a number of 

challenges. As a first task, it was necessary to understand the behavior of the huge 

number  of variables. In a set of approximately 150 machines, on average 100 varia-

bles were monitored by machine, totaling about 15,000 variables. Such large number 

of variables comprises different plants in different platforms and also different types 

(such, as external temperature, oil temperature, vibration, etc). Besides, the frequency 

of data acquisition and data acquisition time-window were two extra parameters to be 

studied in the pursue of the most adequate data sample conditions. After overcoming 

such challenges, the implementation of the first requirement was straightforward.  

For meeting the second requirement, however, it was necessary to propose an in-

novative algorithm to identify groups of correlated variables. In Section 4, we de-

scribe the technique we proposed to dynamically calculate a more precise set of 

alarms for each monitored variable, based on the natural interdependency among 

some of the variables in a plant. As this proposal involves multiple regression analysis 

and this topic is discussed in the next section. 

3 Fundamental concepts 

In this section, we discuss some concepts on which this work was based and which 

are necessary for a clear understanding of the proposed approach, such as multiple 

regression analysis and variable selection. 



3.1 Multiple regression analysis 

According to Aiken et al. (2003), multiple regression analysis is a general system 

for examining the relationship of a collection of independent variables to a single 

dependent variable. Multiple regression analysis provides an assessment of how well 

a set of independent variables taken as a whole account for the dependent variable. 

Multiple regression (MR) analysis involves the estimation of a multiple regression 

equation that summarizes the relationship of a set of predictors to the observed crite-

rion. 

According to Møller et al. (2005), in multiple linear regression, the response varia-

ble Yi is regressed on k explanatory variables (Xi1,...,Xik) in the model: 

Yi = b0 + b1Xi1 + … + bkXik + εi 

where Y is a dependent variable, Xj are the independent variables, b0 is the regression 

intercept, bj are partial regression coefficients (or regression weights) and ε is the 

residual error. Considering  the predicted value for the dependent variable, and Y 

the observed value. In multiple regression, the values of each regression weight b0, b1, 

... , bk are chosen so as to minimize the sum of the squared residuals across the partic-

ipants. That is, the regression weights b0, b1, ... , bk are chosen so that 

 is minimum. 

This criterion is termed ordinary least squares. Multiple regression computed using 

ordinary least squares produces optimal estimates of the regression weights in that the 

correlation between the predicted score  and the observed dependent variable Y is 

maximized. 

Variable Selection.  

A crucial problem in building a multiple regression model is the selection of the 

independent variables that will form the best model (George and McCulloch, 1993). 

Stepwise regression is a standard procedure for variable selection, which is based on 

the procedure of sequentially introducing the predictors into the model one at a time. 

The stepwise regression is classified into three methods: forward selection, backward 

elimination and stepwise method. The forward selection adds predictors to the model 

one at a time. In contrast to the forward selection, the backward elimination begins 

with the full model and successively eliminates one predictor at a time. The stepwise 

method starts as the forward selection, but at each stage the possibility of deleting a 

predictor, as backward elimination, is considered (Chong and Jun, 2005). 

In these methods, the number of variables retained in the final model is determined 

by some criteria assumed for inclusion (or exclusion) of variables in a model, such as 

the covariance index (Edwards, 1985) or the level of significance. Thus, in our ap-

proach we based our decision of including or not a variable in a group for regression 

on the covariance index, as will be further explained in the next section. 



4 The proposed approach 

Our purpose was to propose a technique to dynamically calculate a more precise 

set of alarms (variable monitoring limits) for each monitored variable, based on the 

natural interdependency among some of the variables in a plant. The rationale behind 

this approach goes as follows:  

If the value of a given variable Y can be estimated by applying the val-

ues of a set of variables Xj in a multiple regression model, the set of lim-

its of Y can be recalculated using the same model and taking as input 

the set of limits of each variables Xj, thus allowing the definition of 

tighter limits. 

This is true because, given a multiple regression model that represents this system, 

if we admit that each variable Xj assumes exactly the same value corresponding to a 

limit associated with a specific alarm level, the expected value of Y for this situation 

can be estimated as . As this situation deserves the level of attention associated with 

that given alarm level, if Y reaches the value , it may indicate a malfunctioning de-

serving the same level of attention. Thus, if this value is tighter then the previous limit 

of Y for that alarm level, the value calculated by regression  may be considered as a 

tighter limit for alarming. We call this the “multivariate limit”. 

4.1 Multivariate Limit Algorithm 

The algorithm for calculating the multivariate limit for a given dependent variable 

was implemented meeting some functional requirements defined by the users during 

the specification phase: 

 R2.1: At the beginning of the process, the users should define, based on their expe-

rience. a set of variables that she or he believes are strongly correlated; 

 R2.2: Along the process, the users should be capable of defining (or redefining 

default values) each parameter of the algorithm. 

Therefore, in the process of calculating the multivariate limits, the user has to in-

teracts with the system in several steps to set or change each parameter of the algo-

rithm. Figure 1 illustrates this process, enumerating the eight steps executed and indi-

cating if they are performed by the user or by the system. Each step is explained 

ahead. 

 



 

Fig. 1. Steps for calculating the multivariate limits. 

Step 1: Defining the restricted set of variables and time period.  

At first the user must define a restricted set of variables to be analyzed. This deci-

sion is based on the user’s own experience, i.e., the user will select a set of variables 

that he thinks are strongly correlated, so that they will be the ones considered in the 

further steps for the calculation of the multivariate limits. The user must also define 

the time window for data samples that will be used in the calculation. This step was 

implemented to meet functional requirements elicited in the specification phase. 

Step 2: Recovering information about the selected variables.  

Once the variables were selected and the time period to be considered in the calcu-

lation was defined by the user in the previous step, it is necessary to retrieve the re-

spective data sample from the database. The calculation of the correlation between all 

the variables is carried out using such data set.  

Step 3: Calculating the correlation among variables.  

As we discussed in Section 2.2, it is necessary to identify in the restricted set of 

variables which ones should be included in the final model. To assess the correlation 

among variables, we opted to calculate the covariance between each of the variables 

of the set. We generate the covariance matrix, a matrix whose element Cij in the posi-

tion i, j is the covariance between the ith and jth variables. Thus, the covariance matrix 

gives a hint on how each pair of variables is correlated.  

Step 4: Setting the minimal correlation level.  

Once again abiding to the elicited requirements, this steps allows the user to set the 

minimal correlation level that will be used to identify variables that belong to the 

same cluster, i.e., selecting variables to compose a model. As such, the covariance 

matrix is presented to the user, so that he can define which is the minimum correlation 

value for determining the clusters of variables.  



Step 5: Clusterizing variables according to minimum correlation level.  

To generate the clusters we used an agglomerative algorithm, which takes the cor-

relation value as the measure of similarity. The algorithm gathers the variables in a 

same cluster until the highest value of this correlation in the matrix is less than the 

minimum correlation value defined by the user. The generated clusters are exclusive 

and partial, whereas a variable can only belong to one group and not all variables are 

grouped together due to the defined minimum level of correlation. As our purpose is 

to identify a set of strongly correlated variables, the covariance is adopted as criteria 

to separate clusters of correlated variables that can be represented by a multivariate 

regression model, according with Algorithm 1: 

Algorithm 1. Clustering strongly correlated variables 

1 Calculate the covariance matriz 

2 While there is a Cij > Cmin and matrix dimension > 1 

3   Select the biggest Cij 

4   Group ith and jth variables 

5   Recalculate the covariance matrix 

In this algorithm, Cmin is the minimal covariance for which we consider that two 

variables are strongly correlated, and as such, should be included in the same set for 

defining a multivariate regression model. In each step of the algorithm (line 4) the 

most correlated variable are linearly combined, forming a new derived variable. Giv-

en n variables, at the end of the algorithm, we may have 1 to n groups (clusters) of 

variables. 

Step 6: Selecting clusters to be analyzed.  

The algorithm gathers the variables in a same cluster until the highest value of this 

correlation in the matrix is less than the minimum correlation value defined by the 

user. The generated clusters are exclusive and partial, whereas a variable can only 

belong to one group and not all variables are grouped together due to the defined min-

imum level of correlation. 

Step 7: Calculating the multiple linear model.  

Once the clusters are defined, the multiple linear regression is calculated for each 

group in several iterations, each assuming one variable as the dependent (or target) 

variable (as discussed in Section 3).  

Step 8: Calculating multivariate limits.  

Finally, the multivariable restrictive limits are calculated. 



5 Case Study 

For this case study, we selected a set of ten variables named Var1 to Var10, for each 

of which we have collected a hundred sample values. The graph presented in Figure 2 

shows the behavior of such variables along the time. 

 

Fig. 2. Graph showing the behavior one of each the ten selected variables. 

In this same figure, it is possible to identify that in general there is some interde-

pendency among these variables, as they vary similarly along the time. In fact, apply-

ing the clustering algorithm, according to minimum correlation level, previously dis-

cussed, the following clusters were formed:  

 Cluster 1: Var1, Var2, Var3, Var6, Var9, Var10 

 Cluster 2: Var7, Var8 

 Cluster 3: Var4 

 Cluster 4: Var5 

Variables Var4 and Var5, formed individual clusters, what means in fact that these 

variables weren’t groupped in any of the clusters, i.e., they don’t influence or are 

influenced by any other in the group. 

After the clusters are formed, it is possible to calculate the multivariate limits by 

applying the multiple linear regression. Figure 3 shows the visualization that is pre-

sented for the user indicating the limits for Var3. The green stripe is limited by the 

high and low limits, the yellow stripe is limited below by the high limit and above by 

the very high limit, the orange stripe is limited bellow by the very high limited and 

above by the critically high limit. Then there is the red stripe above all the other 

stripes. 

The multivariate limits can also be seen in the same figure as two black lines, one 

above and the other below the time series of the variable. Their respective values are 

70.83 and 63.67, which are limits very much tighter than the previous limits indicated 

in the figure, which are 80 and 13, the borders of the green stripe. 



 

Fig. 3. Visualization of the limits and behavior of variable Var3 

6 Conclusions 

In this work, we discussed our experience in a project for implementing new func-

tionalities for a system responsible for monitoring turbomachinery plants in oil plat-

forms. This system collects data from different sensors distributed all over a plant, 

each representing a variable. Abnormal conditions of the machines are detected when 

any of the variables related with a given machine go above or below some predefined 

values. At beginning of operation, such operational limits were set based on manufac-

turers’ recommendations. As the machines operate subject to different work condi-

tions in each plant of each platform, such limits were gradually and manually adjusted 

along time, based on the operators experience.  

The purpose of our project was to develop new computational algorithms to be ag-

gregated as new functionalities to the original system, introducing a degree of tech-

niques based on artificial intelligence in the analysis of the turbomachine variables. 

The main purpose was propose algorithms to automatically and dynamically adjust 

the reference limits for each variable reducing the dependence of the operators expe-

riences. 

In this work we focused on an approach based in identification of clusters of corre-

lated variables. The correlation coefficients are used to assess the influence of the 

variables in one another, thus allowing the calculation of narrower limits based on this 



influence. We explained the techniques applied and how such functionality was im-

plemented. With a case study we showed how the multivariate limits are calculated 

and presented to the users, which may use this information to update the monitoring 

limits.  

The implementation of such functionalities met the users requirements and re-

ceived a satisfactory evaluation from the client, which in fact adopted the new algo-

rithm in the original system. However, the evaluation if the new limits will improve 

the overall performance of the plant maintenance could not be performed immediate-

ly. In fact, it requires a long time of data collection and analysis on the tur-

bomachines’ maintenance cycles and will presented in the future. 
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