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Abstract. Anomaly detection is the problem of finding patterns in data
that do not conform to expected behavior. Similarly, when patterns are
numerically distant from the rest of sample, anomalies are indicated as
outliers. Anomaly detection had recently attracted the attention of the
research community for real-world applications. The petroleum indus-
try is one of the application contexts where these problems are present.
The correct detection of such types of unusual information empowers
the decision maker with the capacity to act on the system in order to
correctly avoid, correct, or react to the situations associated with them.
In that sense, heavy extraction machines for pumping and generation
operations like turbomachines are intensively monitored by hundreds of
sensors each that send measurements with a high frequency for damage
prevention. For dealing with this and with the lack of labeled data, in
this paper we propose a combination of a fast and high quality segmen-
tation algorithm with a one-class support vector machine approach for
an efficient anomaly detection in turbomachines. As result we perform
empirical studies comparing our approach to other methods applied to
benchmark problems and a real-life application related to oil platform
turbomachinery anomaly detection.

Keywords: Anomaly detection, support vector machines, time series
segmentation, oil industry application
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1 Introduction

The importance of anomaly detection is a consequence of the fact that anoma-
lies in data translate to significant actionable information in a wide variety of
application domains. The correct detection of such types of unusual information
empowers the decision maker with the capacity to act on the system in order to
correctly avoid, correct, or react to the situations associated with them. Anomaly
detection has extensive use in a wide variety of applications such as fraud and
intrusion detection [1], fault detection in safety critical systems [2], finance [3]
or industrial systems.

In the case of industrial anomaly detection, units suffer damage due to con-
tinuous usage and the normal wear and tear. Such damages need to be detected
early to prevent further escalation and losses. The data in this domain is referred
to as sensor data because it is recorded using different sensors and collected for
analysis. The anomaly detection techniques in this domain monitor the perfor-
mance of industrial components such as motors, turbines, oil flow in pipelines
or other mechanical components and detect defects which might occur due to
wear and tear or other unexpected circumstances. Data in this domain has a
temporal aspect and time series analysis is also used in some works like: [4].

One example in industry applications is the detection of anomalies in turbo-
machinery installed in off-shore petroleum extraction platforms. Recent history
shows us how important a correct handling of these equipment is as failures in
this industry has a dramatic economical, social and environmental impact.

Due to the lack of labeled data for training/validation of models in this paper
we provide a solution for the detection of anomalies in turbomachinery, using a
one-class SVM. This technique uses one class learning techniques for SVM [5] and
learn a region that contains the training data instances (a boundary). Kernels,
such as radial basis function (RBF) kernel, can be used to learn complex regions.
For each test instance, the basic technique determines if the test instance falls
within the learnt region. If a test instance falls within the learnt region, it is
declared as normal, else it is declared as anomalous. We combine this technique
with a time series segmentation to prune noisy, unreliable and inconsistent data.

Therefore, the novelty of our approach is the combination of a fast and high
quality segmentation algorithm with a one-class support vector machine ap-
proach for an efficient anomaly detection. The remainder of this paper is or-
ganized as following. In the next section, we discuss some related work. Subse-
quently, we describe our proposal in detail. After that, we present a case study
for offshore oil platform turbomachinery. This case study is used to compare
our approach with alternatives methods of anomalies or outliers detection. Fi-
nally on section six, some conclusive remarks and directions for future work are
presented.

2 Foundations

The preset work addresses the problem of anomaly detection by combining a
one-class SVM classifier that has previously been used with success for anomaly
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detection with a novel and fast segmentation algorithm specially devised for
this problem. In this section we present the theoretical pillars supporting the
proposal.

2.1 Anomaly detection

Fault and damage prevention is known as the problem of finding patterns in
data that do not conform to an expected behavior[6]. Unexpected patterns are
often referred as anomalies , outliers or faults , depending on the application
domain. In broad terms, anomalies are patterns in data that do not conform to
a well defined normal behavior [6]. There are also extensive surveys of anomaly
detection techniques. See [7] for a survey on the matter.

Anomaly detection techniques have been proposed in literature, based on
distribution, distance, density, clustering and classification. Their applications
vary depending on the user, the problem domains, and even the dataset. In
many cases the anomaly detection is related to outlier detection. In statistics,
an outliers are a data instances that are deviate from given sample in which
they occur. Grubbs in [8] defined an outlying observation, or ‘outlier’, is one
that appears to deviate markedly from other members of the sample in which it
occurs. Some of the anomaly detection techniques are:

– Distribution-based approaches: A given statistical distribution is used to
model the data points. Then, points that deviate from the model are flagged
as anomalies or outliers. These approaches are unsuitable for moderately
high-dimensional datasets and require prior knowledge of the data distri-
bution. They are also named as parametric and non-parametric statistical
modeling [9, 4].

– Depth-based approaches: This computes the different layers of convex hulls
and flags objects in the outer layer as anomalies or outliers. It avoids the re-
quirement of fitting a distribution to the data, but has a high computational
complexity.

– Clustering approaches: Many clustering algorithms can detect anomalies or
outliers as elements that do not belong –or are near– to any cluster. .

– Distance-based approaches: Distance-based anomalies or outliers detection
marks how distant is an element from a subset of the elements closest to it.
It has been pointed out [10] that these methods cannot cope with datasets
having both dense and sparse regions, an issue denominated multi-density
problem.

– Density-based approaches: Density-based anomalies or outliers detection has
been proposed to overcome the multi-density problem by means of the local
outlier factor (LOC). LOF measures the degree of outlierness for each dataset
element and depends on the local density of its neighborhood. This approach
fails to deal correctly with another important issue: the multi-granularity
problem. The local correlation integral (LOCI) method, and its outlier met-
ric, the multi-granularity deviation factor (MDEF), were proposed with the
purpose of correctly dealing with multi-density and multi-granularity [11].
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– Spectral Spectral decomposition is used to embed the data in lower dimen-
sional subspace in which the data instances can be discriminated easily.
Many techniques based on principal component analysis (PCA) has been
emerged [12]. Some of them decompose space to normal, anomaly and noise
subspaces. The anomalies can be then detected in anomaly subspace [13, 14].

– Classification approaches is the problem of identification to which of a cat-
egories a observation belongs to. It operates in two phases: first it learns
a model based on subset observations (training set) and second it infers a
class for new observations (testing set) based on learnt model. This method
operates under the assumption that a classifier distinguishes between nor-
mal and anomalous classes can be learnt in the given feature space. Based on
the labels available for training phase, classification based anomaly detection
techniques can be grouped into two broad categories: multi-class [15, 16] and
and one-class anomaly detection techniques [17]. Classification approaches
employ:
• Rule Based Systems classification uses a rule or concept based on logical

representation of the data instance, e.g., [18].
• Bayesian network uses a model represented by a probabilistic graphical

model.
• Support Vector Machines find a discriminating hyperplane in a feature

space such that it maximizes distance from the data instances of partic-
ular classes. A kernel trick can be used to map a observation into inner
product space without need to compute the product explicitly, e.g., one-
class SVMs [19]

• Artificial Neural Networks is a network of artificial neurons, an abstrac-
tions of biological neurons. They try to resemble learning process of the
biological neural networks [20].

2.2 Time series segmentation

In the problem of finding frequent patterns, the primary purpose of time series
segmentation is dimensionality reduction. For the anomalies detection problems
in turbomachineries, it is essential to segment the dataset available in order
to automatically discover the operational regime of the machine in the recent
past. There is a vast work done in time series segmentation. Before start citing
them, we state a segmentation definition and describe the available segmentation
method classification.

A definition of a time series is a regular time series, where the amount of
time between two consecutive pairs is constant [21].

Depending on the application, the goal of the segmentation is used to lo-
cate stable periods of time, to identify change points, or to simply compress
the original time series into a more compact representation. Although in many
real-life applications a lot of variables must be simultaneously tracked and mon-
itored, most of the segmentation algorithms are used for the analysis of only
one time-variant variable. There is a vast literature about segmentation meth-
ods for different applications. Basically, there are mainly three categories of time
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series segmentation algorithms using dynamic programming. Firstly, sliding win-
dows [22, 23] top-down [24], and bottom-up [25] strategies. The sliding windows
method is a purely implicit segmentation technique. It consists of a segment is
grown until it exceeds some error bound. This process is repeated with the next
data point not included in the newly approximated segment.

There other novel methods for instance those using clustering for segmenta-
tion. The clustered segmentation problem is clearly related with the time series
clustering problem [26] and there are also several definitions for time series [27,
28]. One natural view of segmentation is the attempt to determine which com-
ponents of a data set naturally “belong together”.

There also methods considering multiple regression models. In [29] it is con-
sidered a segmented regression model with one independent variable under the
continuity constraints and studied the asymptotic distributions of the estimated
regression coefficients and change-points. In [30] it is considered some special
cases of the model studied cited before, and provided more details on distri-
butional properties of the estimators. Bai [31]considered a multiple regression
model with structural changes, the model without the continuity constraints at
the change-points, and studied the asymptotic properties of the estimators.

3 Algorithm Proposal

As already hinted earlier in the paper our proposal combines a fast segmentation
algorithm with a support vector machine one class classifier. The segmentation
algorithms takes care of identifying relatively homogeneous parts of the time
series in order to focus the attention of the classifier to the most relevant portion
of the time series. Therefore, parts of the time series that remain on the past
can be safely disregarded.

3.1 Segmentation algorithm

We devised a novel and fast algorithm for time series segmentation. Besides the
obvious purposed of obtaining a segmentation method that produces low ap-
proximation errors another set of guidelines were observed while devising it. In
particular we were interested in low computational impact and easy parameter-
ization.

This yet another segmentation algorithm (YASA) is sketched in Fig. 1 in
pseudocode form. It is best understood when presented in recursive form, as it
goes by computing a linear regression with the time series passed as parameter.
Segmentation procedure first checks if the current level of recursion is acceptable.
After that it goes by fitting a linear regression to the time series data. If the
regression passes the linearity statistical hypothesis test then the current time
series is returned as a unique segment.

If the regression does not models correctly the data it means that it is nec-
essary to partition the time series in at least two parts that should be further
segmented. The last part of YASA is dedicated to this task. It locates the time
instant where the regression had the larger error residuals.
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1: function SegmentData(S(j)
tmax,t0

, ρmin, lmax, smin, l)
Parameters:
. S(j)

tmax,t0
, time series data of sensor j corresponding to time interval [t0, tmax].

. ρmin ∈ [0, 1], minimum significance for statistical hypothesis test of linearity.

. lmax > 0, maximum levels of recursive calls.

. smin > 0, minimum segment length.
Returns:
. Φ := {φ1, . . . , φm}, data segments.

2: if l = lmax then

3: return Φ =
{
S(j)

tmax,t0

}
4: Perform linear regression, {m, b} ← LinearRegression(S(j)

tmax,t0
).

5: if LinearityTest(S(j)
tmax,t0

,m, b) > ρmin then

6: return Φ =
{
S(j)

tmax,t0

}
.

7: Calculate residual errors, {e0, . . . , emax} = Residuals(S(j)
tmax,t0

,m, b).
8: ts ← t0.
9: while max ({e0, . . . , emax}) > 0 and ts /∈ (t0 + smin, tmax − smin) do

10: Determine split point, ts = arg maxt {et}.
11: if ts ∈ (t0 + smin, tmax − smin) then

12: Φleft = SegmentData(S(j)
ts,t0

, ρmin, lmax, smin, l + 1).

13: Φright = SegmentData(S(j)
tmax,ts

, ρmin, lmax, smin, l + 1).
14: return Φ = Φleft ∪ Φright.

15: return Φ =
{
S(j)

tmax,t0

}
.

Fig. 1: Pseudocode of the proposed algorithm.

3.2 One-class support vector machine

One-class classification based anomaly detection techniques assume that all train-
ing instances have only the same class label. Then, a machine learning algorithm
is used to construct a discriminative boundary around the normal instances using
a one-class classification algorithm. Any test instance that does not fall within
the learned boundary is declared as anomalies. Support Vector Machines (SVMs)
have been applied to anomaly detection in the one-class setting. One-class SVMs
find a hyper-plane in feature space which has maximal margin to the origin and
a preset fraction of the training examples lay beyond it.

In this paper we have applied this approach combined with a evolutionary
algorithm [32] for optimizing the maximal margin, as well as other SVM param-
eters, with respect to outlier detection accuracy.

4 Anomaly Detection in Offshore Oil Extraction
Turbomachines

Equipment control automation that includes sensors for monitoring equipment
behavior and remote controlled valves to act upon undesired events is nowadays
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a common scenario in the modern offshore oil platforms. Oil plant automation
physically protects plant integrity. However, it acts reacting to anomalous con-
ditions. Extracting information from the raw data generated by the sensors,is
not a simple task when turbomachinery is involved.

Any devices that extracts energy from or imparts energy to a continuously
moving stream of fluid (liquid or gas) can be called a turbomachine. Elaborat-
ing, a turbomachine is a power or head generating machine which employs the
dynamic action of a rotating element, the rotor; the action of the rotor changes
the energy level of the continuously flowing fluid through the machine. Turbines,
compressors and fans are all members of this family of machines. In contrast to
Positive displacement machines especially of the reciprocating type which are
low speed machines based on the mechanical and volumetric efficiency consider-
ations, majority of turbomachines run at comparatively higher speeds without
any mechanical problems and volumetric efficiency close to hundred per cent.

Assuming independence between turbomachines we can deal with each one
separately. Although, in practice, different machines do affect each other, as they
are interconnected, for the sake of simplicity we will be dealing with one at a
time.

Using that scheme we can construct an abstract model of the problem. A
given turbomachine, M, is monitored by a set of m sensors s(j) ∈ M, with
j = 1, . . . ,m. Each of these sensors are sampled at regular time intervals in
order to produce the time series

S(j)tmax,t0 :=
{
s
(j)
t

}
, t0 ≤ t ≤ tmax . (1)

Using this representation and assuming that sensors are independent, the
problem of interest can be expressed as a two-part problem: (i) predict a future
anomaly in a sensor, and; (ii) decision making from anomaly predictions. This
can be expressed more formally as finding a set of anomaly prediction functions,
A(j)(·), such that

A(j)

(
S(j)t,t−∆t

∣∣∣∣Ŝ(j)tmax,t0

)
=


1 predicted anomaly

0 in other case

, (2)

that is constructed using a given reference (training) set of sensor data, Ŝ
(j)

tmax,t0 ,
and determines if there will be a failure in the near future by processing a

sample of current sensor data S(j)t,t−∆t, with tmax < t − ∆t < t and, generally,
∆t� tmax − t0.

The approach described in Section 3 was prompted by the complexity and
requirements of the task of early detection of behaviours that could potentially
lead to machine or platform failures in the application context of interest.

In order to experimentally study and validate our approach we carried out an
study involving a real-world test case. In this case in particular we deal with a
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dataset of measurements taken with a five minute frequency obtained during the
first half of year 2012 from 64 sensors connected to an operational turbomachine.
An initial analysis of the data yields that there are different profiles or patterns
that are shared by different sensors. This is somewhat expected as sensors with
similar purposes or supervising similar physical properties should have similar
readings characteristics.

There are at least three time series profiles in the dataset. On one hand, we
have smooth homogeneous time series that are generally associated with slow-
changing physical properties. Secondly, we found fast changing/unstable sensor
readings that could be a result of sensor noise or unstable physical quantity.
There is a third class of time series which exhibit a clear change in operat-
ing profile attributable to different usage regimes of the machine or the overall
extraction/processing process.

In order to provide a valid ground for comparison we tested the method
currently used by the platform operator, which is based on statistical confidence
intervals, a one-class support vector machine-based classifier and our proposal.
Problem data was transformed as to detect an anomaly based on consecutive
sensor measurements in one hour.

All approaches of these approaches can be said to be of an unsupervised
learning nature, as they do not require to have labeled data. However, in order
to evaluate the quality of the methods in anomaly detection it was necessary
to prepare a test dataset that contain regular and anomalous data. We carried
out that task by creating a test data set which contained 20 anomaly instances
extracted from each of the 64 time series and 20 regular or non-anomalous situ-
ation.

The need for comparing the performance of the algorithms when confronted
with the different sensor data prompts the use of statistical tools in order to reach
a valid judgement regarding the quality of the solutions, how different algorithms
compare with each other and their computational resource requirements. Box
plots [33] are one of such representations and have been repeatedly applied in
our context. Although box plots allows a visual comparison of the results and,
in principle, some conclusions could be deduced out of them.

Figure 2 shows the quality of the results in terms of the Kappa statistic [34]
obtained from each algorithm in the form of box plots. We have grouped the
results according to the class of sensor data for the sake of a more valuable
presentation of results.

The statistical validity of the judgment of the results calls for the application
of statistical hypothesis tests [35]. The McNemar test [36] is particularly suited
for the assessment of classification problem results, like ones addressed here. This
test is a normal approximation used on paired nominal data. It is applied to 2×2
contingency tables with a dichotomous trait, with matched pairs of subjects, to
determine whether the row and column marginal frequencies are equal. In our
case, we applied the test using to the confusion matrices performed pair-wise
tests on the significance of the difference of the indicator values yielded by the
executions of the algorithms. A significance level, α, of 0.05 was used for all tests.
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(c) Errors for noisy series.

Fig. 2: Box plots of the Kappa statistic yielded by each class of dataset.

Table 1: Confusion matrices yielded by each method.

(a) Confidence intervals.

Predicted

Anom. OK

A
c
t
u
a
l

Anom. 746 534
OK 486 794

(b) One-class SVM.

Predicted

Anom. OK

A
c
t
u
a
l

Anom. 789 491
OK 413 867

(c) YASA/one-class SVM.

Predicted

Anom. OK

A
c
t
u
a
l

Anom. 1099 181
OK 159 1121

Table 2 contains the results of the statistical analysis which confirm the
judgements put forward before.

5 Final Remarks

In this work we combined a novel online segmentation method specially devised
to deal with massive or big data problems with a one-class support vector ma-
chine in order to effectively detect anomalies. We have applied this algorithm to
the segmentation sensor measurements of turbomachines used as part of offshore
oil extraction and processing plants. In the problem under study, our approach
was able to outperform the current approach used in the production system as
well as the traditional formulation of a one-class SVM.

A computational system —whose essential formulation is the method de-
scribed in this paper— is currently deployed by a major petroleum industry
conglomerate of Brazil and is to be presented as a whole in a forthcoming paper.

Further work in this direction is called for and is currently being carried
out. An important direction is the formal understanding of the computational
complexity of the proposal. We also intend to extend the context of application
to other big data application contexts.
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Table 2: Results of the McNemar statistical hypothesis tests. Cells marked in red
(−) are cases where the method in the row yielded statistically better results
when compared to the method in the column. Green cells (+), on the other
hand, mark cases where the algorithm in the column was better then the one in
the row. Finally, cells in blue (∼) denote cases where results from both methods
were statistically indistinguishable.

Y+OSVM O-SVM CIs

Homogeneous series

YASA + One-class SVM · ∼ +
One-class SVM (OSVM) · −

Confidence intervals (CIs) ·

Multi-modal series

YASA + One-class SVM · + +
One-class SVM (OSVM) · ∼

Confidence intervals (CIs) ·

Noisy series

YASA + One-class SVM · + +
One-class SVM (OSVM) · ∼

Confidence intervals (CIs) ·

All data

YASA + One-class SVM · + +
One-class SVM (OSVM) · +

Confidence intervals (CIs) ·
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