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Abstract
Evolutionary multi-objective optimization algorithms (EMOAs) have been successfully applied in many real-life problems.
EMOAs approximate the set of trade-offs between multiple conflicting objectives, known as the Pareto optimal set. Reference
point approaches can alleviate the optimization process by highlighting relevant areas of the Pareto set and support the
decision makers to take the more confident evaluation. One important drawback of this approaches is that they require an
in-depth knowledge of the problem being solved in order to function correctly. Collective intelligence has been put forward
as an alternative to deal with situations like these. This paper extends some well-known EMOAs to incorporate collective
preferences and interactive techniques. Similarly, two new preference-based multi-objective optimization performance
indicators are introduced in order to analyze the results produced by the proposed algorithms in the comparative experiments
carried out.
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1 Introduction

Multi-objective optimization problems (MOPs) involve the simultaneous optimization a set of
possibly contradictory objective functions. Formally, an MOP can be defined as the problem

minF(x) = {f1(x), . . . , fk(x)} , with x = 〈x1, . . . , xn〉 ∈ Ω . (1)

The solution of an MOP is the Pareto optimal set,

PS := {x ∈ Ω| � ∃y ∈ Ω : y ≺ x} , (2)
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96 Collective Intelligence in Interactive EMO

that contains all the elements of Ω that not Pareto-dominated (≺) by any other element [3]. Elements
of PS represent different trade-offs between the objective functions values. The projection of PS
through F() is known as the Pareto optimal front, PF .

In the general case, MOPs (as all other optimization problems) are NP-hard [14]. That is
why metaheuristic approaches have become the state-of-the-art methods to deal with them. The
application of evolutionary computation to MOPs has prompted the creation of evolutionary
multi-objective optimization algorithms (EMOAs) [3]. Most EMOAs approximate the PS as a
discrete set of points.

Having a Pareto optimal set that represents the solution of an MOP, a decision maker (DM) must
identify which of those solutions are the ones that satisfy her/his preferences and should be realized
in practice. This task can be rather complex and requires in-depth knowledge of the problem being
solved, something that is often impossible in practical situations. Furthermore, it can be argued that
educing and profiting from those preferences at early stages of the optimization process would allow
the algorithm to focus only of areas of the Pareto optimal set that are of actual interest, thus reducing
its computational footprint.

Because of these reasons, reference points [9] and interactive EMOAs [21] have be used to
mitigate these inconveniences and support the DM in reaching a proper specification. Interactive
techniques and reference points can be used to mitigate those inconveniences and steer the search
for a suitable resolution in preferred areas of PF . The combination of the evolutionary search process
and DM preferences improves the population quality throughout the evolutionary process and leads
to compromise solutions of practical interest. These approaches allow the optimization algorithm to
reduce the search area and thus reaching satisfactory solutions at a lower computational cost.

In practice, however, optimization problems pose difficulties in defining a priori reference points
or preferences. This mainly because a substantial problem domain knowledge is necessary on behalf
of the DM. However, this contradicts the principles of evolutionary algorithms, as they are meant
to be black-box optimizers that able to deal with highly uncertain problems and require as little as
possible a priori knowledge. This situation is frequently aggravated as DMs with a sound knowledge
of the application domain tend to be scarce or not cooperative.

In this regard, collective intelligence [15] reference points obtained by the interaction and
aggregation of multiple opinions can be used to produce an accurate representation of preferences
and, hence, reference points. This approach can also eliminate the unilateral choice bias that can be
introduced by a single DM.

This work incorporates the online and interactive eduction of collective-based preferences
into three existing EMOAs. In particular, we introduce a collective intelligence version of the
nondomination sorting genetic algorithm (NSGA-II) [7], the improved strength Pareto evolutionary
algorithm (SPEA2) [24] and the S-metric selection evolutionary multiobjective algorithm (SMS-
EMOA) [7].

Similarly, while working on this task it became evident the lack of adequate performance
indicators that take into account preferences. Therefore, as part of this work, two new performance
indicators are also introduced and used to evaluate the quality of the PF approximation driven by the
online collective preferences.

This paper is organized in the following manner. It proceeds with Section 2 that covers some
required formal foundations regarding reference points and collective intelligence. Section 3
introduces the novel interactive EMOAs. Subsequently, Section 4 presents the new performance
indicators that are to be used later on. After that, Section 5 analyzes the performance of the
algorithms when face with benchmark problem. Finally, conclusive remarks and future work
directions are put forward.
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Collective Intelligence in Interactive EMO 97

2 Foundations

Preferences are user-defined parameters and denote values or subjective impressions regarding the
trade-offs points. It transforms qualitative feelings into quantitative values to bias the search during
the optimization phase and restrict the objective space. In this sense, a reliable preference vector
improves the trade-off answers obtained.

The reference point approach [23] concentrates the search of Pareto non-dominated solutions
near a selected point. It is based on the achievement scalarizing function that uses a reference
point to capture the desired values of the objective functions. Let z0 be a reference point for
an n-objective optimization problem of minimizing F(x) = {f1(x), ..., fk(x)}, the reference point
scalarizing function can be stated as follows:

σ
(
z, z0, λ, ρ

) = max
i=1,...,k

{
λi

(
zi − z0

i

)} + ρ

k∑
i=1

λi
(
zi − z0

i

)
, (3)

where z ∈ Z is one objective vector, z0 = 〈
z0

1, ..., z0
k

〉
is a reference point vector, σ is a mapping

from Rk onto R, λ = 〈λ1, ..., λk〉 is a scaling coefficients vector and ρ is an arbitrary small positive
number. Therefore, the achievement problem can be rebuilt as: min σ

(
z, z0, λ, ρ

)
.

A subset X of Rn is convex if for any two pair of solutions x1, x2 ∈ X and α ∈ [0, 1], the following
condition is true: αx1 + (1 − α)x2 ∈ X. The intersection of all the convex sets containing a given
subset X of Rn is called the convex hull of X. The convex hull of a set of points is the smallest
convex set that contains the points.

The convex hull of individual minima (CHIM) [5] is the set of points in Rk that are convex
combinations of F∗

i − F∗. That is, letting F∗
i = F(x∗

i ), ∀i ∈ {1, . . . , k}, and Φ is a pay-off matrix
k xk whose the ith column is F∗

i − F∗, the CHIM is defined as,

H =
{

Φβ : β ∈ Rk ,
k∑

i=1

βi = 1, βi ≥ 0

}
, (4)

where x∗
i is the global minimizers of fi(x), ∀i ∈ {1, . . . , k}.

2.1 Collective intelligence

Since the beginning of this century, the development of social network technologies and interactive
online systems has promoted a broader understanding of the ‘intelligence’ concept. A new
phenomenon appeared based not only on the cognition of one individual but also placed on a
network of relationships with other people and the external world. The field is known as collective
intelligence (COIN) [15] is defined as the self-organized group intelligence arisen from participatory
and collaborative actions of many individuals. Shared tasks or issues are handled by singular
contributions in such a manner that their aggregation process creates better results and solves more
problems than each particular contribution separately.

Inside collective environment, contributions come from different people. Clustering algorithms
distinguish the users with similar preferences to perform a cooperative evolution or decision making
choice. A mixture model is a probabilistic model to reveal distributions of observations in the overall
population. Given a data set Y = {y1, . . . , yN } where yi is a d-dimensional vector measurement with
the points created from density p(y), a finite mixture model is defined as:

p (y|Θ) =
K∑

k=1

αkpk (y|zk , θk) . (5)
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98 Collective Intelligence in Interactive EMO

Let K ≥ 1 be the number of components, pk (y|zk , θk) be the mixture components where each k is
a density or distribution over p (y) and parameters θk , z = 〈z1, . . . , zk〉 be a K-ary random variable
defining the identity of the mixture component that produced y, and αk = pk (zk) are the mixture
weights representing the probability that y was generated by component k. Hence, the parameters
for a mixture model is Θ = {α1, . . . , αK , θ1, . . . , θK}, 1 ≤ k ≤ K.

The central limit theorem [13] explains why many applications that are inf luenced by a large
number of random factors have a probability density function that approximates a Gaussian distri-
bution. Let Y be a sequence of random variables that are identically and independently distributed,
with mean μ and variance σ 2. The distribution of the normalized sum Sn = 1√

n
(y1 + . . . + yN )

approaches the Gaussian distribution, G(μ, σ 2), as n → ∞.
In a Gaussian mixture model, each of the K components is a Gaussian density with parameters

θ = {μk, Σk}, y ∈ R
d and function as:

pk (y|θk) = 1

(2π)d/2 |Σk |1/2
e− 1

2 (y−μk)
t
Σ−1

k (y−μk). (6)

The expectation maximization (EM) algorithm [11] for Gaussian mixture is a particular way
of implementing the maximum likelihood estimation in probabilistic models with incomplete or
missing data values. EM learns the parameters θk guessing a distribution for the unobserved
data and finds the cluster to which a singular chromosome most likely belongs. It starts with an
initial estimation of Θ and iterates between E-step and M-step of the algorithm to update Θ until
convergence.

2.2 Interactice and prefecence-based EMOAs

Interactive genetic algorithms (IGAs) have successfully applied to get feedbacks of transitional
results during the evolution process. IGA incorporates external evaluation to support problems whose
optimization objectives are complex to be defined by a priori exact functions. It employs users’
subjectivities as fitness values to drive the search engine.

Likewise, EMOAs can operate interactively and handle intermediate non-dominated solutions to
the DM. Deb et al. [8] proposed an interactive EMOA approach termed PI-EMO. This technique
changes progressively the value function after every few generations to lead the optimization on
more preferred solutions. After t generations, the user analyses η (≥ 2) well-sparse non-dominated
solutions and provides a complete or partial ranking of preference information about them.
iEMOA/D [12], an interactive version of the decomposition-based multi-objective evolutionary
algorithm, asks the DMs to analyse some current solutions and use their feedbacks to renew the
preferred weight region in the following optimization. The algorithm IGAMII [1] applies fuzzy
logic to simulate the human DM and relieve the constant interaction during the evolution. In BC-
EMO [18], the support vector ranking algorithm is used to learn an approximation of the DM utility
function.

3 Collective intelligence EMOAs

The purpose of this work is the enhancement of EMOAs through the use of the collective preferences;
interactive genetic algorithms are an appropriate technique to support this goal. The new algorithms
are extensions of the classical EMOAs: NSGA-II, SPEA2 and SMS-EMOA. The main changes on
the original methods are the incorporation of COIN into the selection procedure, the transformation
of the continuous evolutionary process into an interactive one and the adoption of reference points
to drive the search towards relevant regions in Pareto optimal front.
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Collective Intelligence in Interactive EMO 99

3.1 CI-NSGA-II

One of the new algorithms is an improvement of NSGA-II [7]. The NSGA-II is a non-domination-
based genetic algorithm for multi-objective optimization. It adopts two main concepts: a density
information for diversity and a fast non-dominated sorting in the population. The crowding distance
uses the size of the largest cuboid enclosing two neighboring solutions to estimate the density of
points in the front. The non-dominated sorting places each individual into a specific front such that
the first front τ1 is a non-dominant set, the second front τ2 is dominated only by the individuals in
τ1 and so on. Each solution inside the front τn receives a rank equal to its non-domination level n.

The selection operator uses the rank (irank) and crowding distance (idist) in a binary tournament.
The partial order ≺c between two individuals i and j, e.g. prefers the minor domination rank if they
are from different fronts or otherwise, the one with higher values of crowding distance.

i ≺c j := irank < jrank ∨ (irank = jrank ∧ idist > jdist). (7)

In Algorithm 1, the new CI-NSGA-II converts the original NSGA-II into an interactive process.
The subroutine CollectiveContributions() suspends the evolution progress and submits some
individuals from population to the users’ evaluation. In this research, the individuals received can be
analyzed in two different ways: (i) a pairwise comparison allows the selection of the best candidate
between two or more individuals; (ii) a dynamic game scenario stimulates the participant creativity
to improve or produce new individuals. Both approaches discover online reference points.

Inside collective environment, the contributions come from different people. Assuming the central
limit theorem [13], the inputs have a distribution that is approximately Gaussian. Therefore, after
each collective interaction, the subroutine ExpectationMaximization() gets the users’ collaboration
as a Gaussian mixture model to emulate the evaluation landscape of all participants’ preferences.

The expectation maximization approach creates online reference points (Θ) for search optimiza-
tion. Whether the user’s collaboration is a simple vote on the best individual presented to him
(pairwise comparison) or a complete re-edited individual, the clustering algorithm distinguishes the
users with similar preferences to perform a cooperative evolution and a decision making choice
through the collective reference points.
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100 Collective Intelligence in Interactive EMO

The procedure ReferencePointDistance() calculates the minimum distance from each point in
the population to the nearest collective reference points in Θ . This way, the point near the reference
point is favoured and stored in the new population. CI-NSGA-II develops a partial order similar to
the NSGA-II procedure, but replaces the crowding distance operator by the distance to collective
reference points (iref ).

i ≺c j := irank < jrank ∨ (irank = jrank ∧ iref < jref ). (8)

This algorithm performs the COIN Selection() operation based on the new partial order. Like
NSGA-II, individuals with minor domination rank are preferred. But if they belong to the same
front, the one with the closest reference point distance is used instead.

CI-NSGA-II prioritizes the points close to the online collective reference point. The algorithm
consumes preference information to explore satisfactory solutions for DMs.

3.2 CI-SMS-EMOA

The SMS-EMOA [2] is a steady-state algorithm that applies the non-dominated sorting as a ranking
criterion and the hypervolume measure (S) as a selection operator.

After the non-domination ranking, the next step is to update the last front population, Pworst. It
replaces the member with the minimum contribution to Pworst hypervolume by a new individual that
increases the hypervolume covered by the population.

The new algorithm CI-SMS-EMOA converts the original SMS-EMOA into an interactive
process. The CollectiveContributions() and ExpectationMaximization() subroutines have the
same purpose and work as the CI-NSGA-II.

The selection operation, performed by the COIN Selection() procedure, prefers individuals
with minor domination rank (irank). If they belong to the same front, the one with the maximum
contribution to the hypervolume of the set and the closest reference point distance (iref ) is selected.

A procedure Hype-RefPoint Distance() gets the hypervolume contribution (S) and calculates the
minimum distance from each solution in the population to the nearest collective reference points in
Θ . This way, the point with high hypervolume value and short reference point distance is favoured
and stored in the new population.

3.3 CI-SPEA2

The improved Strength Pareto Evolutionary Algorithm (SPEA2) [24] developed a fitness assignment
strategy based on the number of individuals that one solution dominates and it isdominated by.
SPEA2 implements elitism by keeping an external population (archive) of size N . The archive
preserves the best solutions since the beginning of the evolution.

The strength ST(i) for each individual i is the number of population members it dominates:
ST(i) = |{j : j ∈ Pt ⊕ P̄t ∧ i ≺ j}|, where ⊕ is the multiset union, Pt and P̄t are the population
and archive population at generation t, respectively. The fitness F(i) for an individual i is given by
the strength of its dominators: F(i) = ∑

ST(j), where j ∈ Pt ∨ P̄t, j ≺ i. High values of F(i)
means the individual i is dominated by many others and F(i) = 0 corresponds to a non-dominated
individual.

SPEA2 uses a nearest density estimation technique, adapted from the kNN method, to distinguish
individuals having the same fitness values. This density function is a function of the distance to the
k-th nearest data point and it is added to the fitness function F.

In the new algorithm CI-SPEA2, subroutine COIN Selection() computes the strength of all
individuals, and the non-dominated members are copied to the archive P̄t. The k-th nearest data
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Collective Intelligence in Interactive EMO 101

point used to calculate the original density function in SPEA2 was substituted by the collective
reference points Θ . If the archive | P̄t |≤ N , the algorithm chooses the nearest individuals to the
collective reference point until the archive size is reached. Otherwise, if | P̄t |> N , it removes the
more distant ones proportionally to the number of individuals in each reference point cluster. This
way, the archive keeps the same distribution of points around its reference points.

4 Performance indicators

Several performance indicators are used to evaluate the outcome sets of EMOAs. They measure the
quality of the Pareto front approximation and allow comparison between different algorithms. There
exist a variety of approaches that analyse the distribution of points in objective function space and
the accuracy in terms of convergence.

The Pareto optimal front coverage indicator, DS→PF , is a proximity indicator that defines the
distance between an achieved approximation set S and their closest counterpart in the current Pareto
optimal front:

DS→PF (S) = 1

|S|
∑
x∈S

min
x′∈PS

{
d

(
x, x′)} , (9)

where d is the Euclidean distance between two points. Small values of DS→PF indicate proximity to
the PF .

However, some others indicators like coverage of two sets, diversity and the hypervolume could
not be employed in this study. Because their values depend on the spread of solutions in the whole
Pareto front and, on the contrary, the proposed algorithms aim to obtain subsets of solutions close
to the collective reference points. There is a lack of performance indicators that focus only on the
proportion of occupied area in PF . For that reason, the following subsection presents two new ones.

4.1 Referential cluster variance indicator

Instead of a good spread of solutions along PF , the method proposed in this work wants to obtain
subsets of solutions close to the collective reference point. In this context, a small cluster variance
means the individuals from the sample Y = {y1, . . . , yN } of size N are clustered closely around the
population mean (μ) or the reference point (z0). A low dispersion for a group of preferred points in
PF denotes a better efficiency of the approach tested. The referential cluster variance indicator κ is
represented as follows:

κ = 1

N

N∑
i=1

(
yi − μ

)2 . (10)

In cases with more than one collective reference point (zj), the points are clustered based on the
closest distance to one of the reference points: Cj = {a ∈ Rk : ‖a − zj‖ ≤ ‖a − zi‖, ∀i}. Cluster Cj
consists of all points for which zj is the closest. The referential cluster variance is calculated to each
cluster separately.

4.2 Convex hull volume indicator

Convex hull is a well-known geometric object widely used in various fields such as shape analysis,
pattern recognition, geographical information systems, image processing, etc. It has been also
applied in the multi-objective optimization scenario.
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102 Collective Intelligence in Interactive EMO

FIGURE 1. Convex hull and alpha shape of non-dominated points after CI-NSGA-II iterations with
one reference point.

The normal boundary intersection method (NBI) [5] projects elements of the CHIM towards the
boundary ∂Z of the objective space Z through a normal vector N . The intersection point between
∂Z and N the normal pointing is a Pareto optimal point, if the PF surface is convex. Martínez
and Coello [16] introduced an archiving strategy based on the CHIM to find evenly distributed
points along the PF . Their convex hull multi-objective evolutionary algorithm (CH-EMOA) uses an
archiving mechanism that stores non-dominated solutions that are orthogonal to each point of CHIM
(h ∈ H). Likewise, Shan-Fan et al. [20] presented an EMOA where the non-dominated solutions are
picked out from dominated solutions by the quick convex hulls algorithm.

Wang et al. [22] proposed a convex hull-based multi-objective genetic programming (CH-MOGP)
that follows similar strategies than SMS-EMOA and NSGA-II. But it uses convex hull-based
sorting approach as an indicator schema to rank the individuals into different levels. Monfared [17]
also employs convex hull concepts to elaborate a geometric ranking procedure for non-dominated
comparisons in NSGA-II.

The idea of convex hull can be borrowed and applied as a performance indicator to measure the
quality of the non-dominated points around the collective reference points. Connecting the closest
final points to each reference point will produce a facet representation of the PF . The volume of the
convex hull can be used as a scalar indicator for the distribution of points in PF . Small values of the
hull volume (Ψ ) indicate concentrate points.

Non-convex problems can use alpha shapes to determine a concave hull of theirs points in PF .
The alpha shape is a subgraph of the Delaunay triangulation. The value of alpha (α) controls the
geometric design of the shape. For large α values the shape approaches to the boundary of the
convex hull. On the other hand, as α decreases the shape shows more cavities.

Figure 1 illustrates the convex and non-convex enclosure for the non-dominated points generated
by the CI-NSGA-II algorithm. The test problems used are the ZDT1 and DTLZ3, respectively (see
Section 5).

5 Experimental results

This section presents some results of CI-NSGA-II, CI-SPEA2 and CI-SMS-EMOA. The scalable
multi-objective test problems from the DTLZ and WFG problem sets [3] have a known optimal front
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Collective Intelligence in Interactive EMO 103

FIGURE 2. The robot’s predefined point will choose candidate c1 because the distance d1 < d2.

and can be used to benchmark the outcome of the algorithms. Their features cover different classes
of MOPs: convex PF , non-contiguous convex parts, non-convex, multi-modal, etc. For those reasons,
the test problems subject the new algorithms to distinct optimization difficulties and compare their
results.

The experiment emulates the collectivity by developing some simulated DMs (robots). Each robot
has a predefined point in the objective space that will be used to direct robots’ votes in a pairwise
comparison between two individuals from Pareto front. Therefore, the robot votes on a solution
according to the closest distance between its predefined point and each of the two candidates.

Figure 2 illustrates candidates c1 and c2 with their respectively distances to the predefined point,
d1 and d2. As d1 < d2, the robot would vote on c1. Robots create the collective reference points with
a better reasoning strategy than simply random choice. It is important to notice that the collective
reference point is built on the similarity of answers (votes) after the Gaussian mixture model and
cannot be confused with the robots’ predefined points.

Very few EMOAs consider more than one user for reference point selection or evolutionary
interaction. They neglect a collective scenario where many users could actively interact and take
part of the decision process throughout the optimization. Furthermore, the new algorithms choose
the reference points interactively. The references are not defined a priori, like the R-NSGA-II [10],
nor indicated by the DM as the middle point in the light beam approach [6]. Rather, all the references
are discovered online with the support of a genuine collective intelligence of many users.

In this experiment, the robots abstract the collectivity within a controlled environment. So the
algorithms can be tested, compared and better understood in their working principles. The quantity
of online reference points is directly related to the number of k clusters in the Gaussian mixture
model.

In cases where k is not previously defined, the experiment used the X-means algorithm [19] to
learn k from the data. This algorithm searches different values of k and scores each clustering model
using the Bayesian information criterion (BIC): BIC(Mj) = ιj(D)− (pj/2) log R, where D is the data
set, Mj are models corresponding to solutions with different values of k, ιj(D) is the log-likelihood
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104 Collective Intelligence in Interactive EMO

TABLE 1. Results of the Conover-Inman statistical hypothesis tests based on the mean values. Green
cells (+) denote cases where the algorithm in the row statistically was better than the one in the
column. Cells marked in red (−) are cases where the method in the column yielded statistically
better results when compared to the method in the row.

of the data set D according to model Mj, pj is the number of parameters in Mj, and R is the number
of points in the data set. X-means chooses the model with the best score.

The front coverage (DS→PF ), the referential cluster variance (κ) and the hull volume (Ψ ) indicators
were used to measure the quality of the algorithms. In addition to the Gaussian mixture model, the
K-means algorithm was implemented to bring a different clustering technique into the analysis of the
algorithms. But the performance of Gaussian mixture for these benchmarking cases was consistently
better.

In order to provide a ground for comparison, two reference-point-based EMOAs are also included
in the experiment: the R-NSGA-II and W-HYPE algorithms. Both algorithms use a priori the
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Collective Intelligence in Interactive EMO 105

FIGURE 3. Average performance ranking across the DTLZ and WFG test problems.

reference points z0 = (0.3, 0.3) and z0 = (0.3, 0.3, 0.3) for the problems with two and three
objectives, respectively.

For every algorithm/problem combination 30 experiment runs were performed. The resulting
values pf the performance indicators were analyzed using the Conover-Inman procedure [4]. This
is a non-parametric method for testing equality of population medians. It can be implemented in a
pairwise manner to determine if the results of one algorithm were significantly better than those of
the other. A significance level, α, of 0.05 was used for all tests. Table 1 contains the results of the
statistical analysis for all the test problems based on the mean values.

The process of discovering the best algorithm is rather difficult as it implies cross-examining and
comparing the results of their performance indicators.

Figure 3 present a more integrative representation by grouping their indicators. A higher value of
average performance ranking implies that the algorithm consistently achieved lower values of the
indicators being assessed.

In this case, lower values mean better convergence to PF and higher concentration around the
collective reference points. For a given set of algorithms A1, . . . , AK , a set of P test problem instances
Φ1, . . . , ΦP, the function δ is defined as:

δ
(
Ai, Aj, Φp

) =
{

1 if Ai � Aj solving Φp,

0 otherwise
(11)

where the relation Ai � Aj defines if Ai is better than Aj when solving the problem instance Φp in
terms of the performance indicators: DS→PF , κ and Ψ . Relying on δ, the performance index Pp(Ai)

of a given algorithm Ai when solving Φp is then computed as: Pp(Ai) =
K∑

j=1,j �=i
δ
(
Ai, Aj, Φp

)
.
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106 Collective Intelligence in Interactive EMO

The CI-NSGA-II with Gaussian mixture model consistently outperformed the others algorithms
in most cases. Concerning the convergence indicator, CI-NSGA-II was ranked best in 16 of 21 test
functions, except for DTLZ1, WFG6 and WFG8. The CI-SPEA2 and CI-SMS-EMOA have a similar
performance on WFG tests. It is worth noticing that ZDT4 experiment demonstrated a premature
convergence around the online reference points. A better control of the extent of obtained solutions
must be investigated to avoid this behaviour.

In summary, the interactive EMOAs and their collective reference points proved to be well
matched for the range of DTLZ and WFG test problems.

6 Final remarks

In this work, we have introduced new algorithms to improve the successive stages of evolution via
dynamic group preferences. The interactive algorithms can apprehend people’s heterogeneity and
common sense to guide the search through relevant regions of Pareto optimal front.

The new approaches have been tested successfully in benchmark problems. Two different
performance indicators were presented with the intention to measure the proportion of occupied
area in PF .

Currently, we have been exploring different features of the evolutionary process, such as: the
usage of COIN as a local search for new individuals and opening the population for users’ update to
augment its quality.

Replacing the robots by human collaborators, this research has a simulated environment1 that
represents the facility location problem. In this context, individuals from the evolutionary algorithm
population are distributed to the participants who have to fix and change the position arrangement
or the resource distribution in the scenario. This simulated environment promotes the collaboration
and supports rational improvements in the quality of the population. The algorithms —CI-NSGA-II,
CI-SMS-EMOA and CI-SPEA2— introduced and compared here are used to iteratively refine the
search parameters with collective preferences.

In the near future, we plan to work on creative solutions unfolded by the participants and possibly
explore non-explicit objectives hidden in more complex scenario. Furthermore, we intent to apply
directional information from the collective reference points during the evolution process. This
way, the technique can extract the intelligence of the crowds and, at the same time, minimize the
interruptions of the algorithm.
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